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Abstract
Conservation and management professionals often work across jurisdictional bound-
aries to identify broad ecological patterns. These collaborations help to protect 
populations whose distributions span political borders. One common limitation to 
multijurisdictional collaboration is consistency in data recording and reporting. This 
limitation can impact genetic research, which relies on data about specific markers in 
an organism's genome. Incomplete overlap of markers between separate studies can 
prevent direct comparisons of results. Standardized marker panels can reduce the im-
pact of this issue and provide a common starting place for new research. Genotyping-
in-thousands (GTSeq) is one approach used to create standardized marker panels for 
nonmodel organisms. Here, we describe the development, optimization, and early as-
sessments of a new GTSeq panel for use with walleye (Sander vitreus) from the Great 
Lakes region of North America. High genome-coverage sequencing conducted using 
RAD capture provided genotypes for thousands of single nucleotide polymorphisms 
(SNPs). From these markers, SNP and microhaplotype markers were chosen, which 
were informative for genetic stock identification (GSI) and kinship analysis. The final 
GTSeq panel contained 500 markers, including 197 microhaplotypes and 303 SNPs. 
Leave-one-out GSI simulations indicated that GSI accuracy should be greater than 
80% in most jurisdictions. The false-positive rates of parent-offspring and full-sibling 
kinship identification were found to be low. Finally, genotypes could be consistently 
scored among separate sequencing runs >94% of the time. Results indicate that the 
GTSeq panel that we developed should perform well for multijurisdictional walleye 
research throughout the Great Lakes region.
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1  |  INTRODUC TION

Effective conservation of biological diversity requires collabora-
tive research to inform conservation or natural resource planning. 
In many cases, this involves working across political boundaries 
and merging datasets generated in different laboratories to iden-
tify broad ecological patterns undetectable at a more regional scale 
(Jay et al., 2016; Margerum, 2008). Unfortunately, merging indepen-
dent datasets is often impeded when studies do not share a com-
mon methodology (de Groot et al., 2015; Fairweather et al., 2018; 
Hunter et al., 2020). This can be an issue for genetic studies, which 
frequently generate marker sets de novo for each experiment (e.g., 
genotyping-by-sequencing; restriction site-associated DNA se-
quencing [RAD-seq]) or use laboratory-specific protocols or marker 
panels (e.g., microsatellite genotyping) that result in genotype 
scoring discrepancies when datasets are merged (Goh et al., 2017; 
Pasqualotto et al., 2007). Without standardized methods and marker 
panels, genetic data generated from independent laboratories can 
be difficult or impossible to merge, limiting opportunities for collab-
oration and hampering the incorporation of molecular resources into 
natural resource planning.

Establishing standardized marker panels is important because 
genetic data provide insight into population biology and connectiv-
ity, recruitment dynamics, assessments of historical demography, 
and population-specific mortality, which can take place across a 
large geographical area (Allendorf et al., 2010; Benestan et al., 2016). 
Therefore, collaboration among researchers is often necessary to 
extend population genetic research beyond a local scale (McKinney 
et al., 2020; Ruzzante et al., 1999). Historically, standardized marker 
panels for nonmodel species have mostly included microsatellite 
panels, or more recently, TaqMan assays, which require extensive 
laboratory validation to ensure genotype accuracy (Ellis et al., 2011; 
Hui et al., 2008; Seeb et al., 2007). Data collected using these types 
of resources have enabled managers to work collaboratively to in-
form policies structured around a species or population boundary, 
rather than a political or jurisdictional boundary (Homola et al., 2019; 
White et al., 2021). The development of new marker panels for com-
mon study organisms that are less reliant on intensive laboratory val-
idation than microsatellite panels could benefit many species.

Standardized resources may particularly benefit the conserva-
tion of mobile species that frequently cross political boundaries (e.g., 
border waters of the Laurentian Great Lakes (Hildebrand et al., 2002) 
or transboundary conservation regions such as the Kavango–
Zambezi Transfrontier Conservation Area (KAZA) in Africa or the 
Amazon River basin in South America; Mena et al.,  2020; Stoldt 
et al., 2020). Species in these transboundary regions are often man-
aged by multiple agencies that conduct research separately but must 
work collaboratively to protect the entire population. Sequencing-
based genotyping panels, such as genotyping-in-thousands (GTSeq), 
are becoming an increasingly accessible approach for nonmodel 
organisms (Campbell et al.,  2015; Meek & Larson, 2019). Because 
this approach uses DNA sequencing, which provides exact nucleo-
tide arrangements, the resulting genotypes can be more easily and 

consistently compared among studies than other PCR-based assays. 
Other approaches such as microsatellite DNA markers, which re-
quire manual allele calling, are more vulnerable to human error and 
laboratory variability, making inter-laboratory comparisons more 
difficult. The adoption of amplicon sequencing panels by laborato-
ries with a purview of conducting research in major transboundary 
regions can help to facilitate collaboration and generate data that 
can be used for large-scale meta-analyses or long-term monitoring 
of populations dynamics and genetic diversity (Hayward et al., 2022; 
McCane et al., 2018). However, published GTSeq panels are still un-
available for most species and can be time-consuming to develop 
and implement.

Many of the developed GTSeq panels are for species of fisheries 
management interest, such as Pacific salmon (e.g., Chang et al., 2021; 
McKinney et al.,  2020) and trout (Bohling et al.,  2021). Another 
species with a recently developed GTSeq panel is walleye (Sander 
vitreus; Bootsma et al., 2020). Walleye is a highly mobile predatory 
species of fish native to North America, with an expansive endemic 
range spanning most of the United States and Canada (Figure S1–
S8; Billington et al., 2011). There are many applications for a genetic 
panel for walleye, including tracking hatchery outplants, genetic-
informed domestication of aquaculture strains, population genetics, 
and genetic stock identification (GSI) of natural populations (Euclide, 
Robinson, et al.,  2021). The GTSeq panel developed by Bootsma 
et al.  (2020) was created specifically for walleye in inland lakes in 
the Mississippi River basin of Wisconsin and Minnesota (Bootsma 
et al., 2020, 2021). However, allele frequencies and genetic diversity 
differ between Mississippi River basin and Great Lakes walleye pop-
ulations. Therefore, there has been some concern that an additional 
marker panel may be necessary to inform the conservation and man-
agement of walleye populations with broader Great Lakes ancestry.

Walleye stocks support extensive recreational and commercial 
harvest managed by numerous First Nation and tribal communities, 
Canadian provincial agencies, and eight American states surround-
ing the Great Lakes. Walleye can swim hundreds of kilometers per 
year, which means that walleye produced in one jurisdiction con-
tributes to fishing opportunities in other jurisdictions (Brenden 
et al., 2015; Hayden et al., 2014; Matley et al., 2020). With so many 
sources of walleye recruitment and mortality, tracking walleye pro-
ductivity in the Great Lakes has been a priority (Wills et al., 2020). 
Genetics is one effective method to track walleye productivity and 
stock connectivity; however, previous work has relied on microsat-
ellite panels or large single-use genotyping-by-sequencing studies 
(Chen, Euclide, et al.,  2020; Garner et al.,  2013), neither of which 
provide the compositional consistency necessary to merge datasets 
produced in different laboratories.

Here we describe the multi-omic development and outline appli-
cations of a new GTSeq panel developed from 29 walleye spawning 
populations in the Great Lakes. The objectives of our study were to: 
(1) develop a general-use GTSeq panel that includes genetic diver-
sity from major walleye stocks in state, provincial, and tribal manage-
ment jurisdictions in the Great Lakes, (2) evaluate the effectiveness 
of the panel to conduct mixed-stock analysis and pedigree/kinship 
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analysis throughout the Great Lakes and within each lake, and (3) 
quantify genotype call variation among laboratories.

2  |  METHODS

2.1  |  Study system and genetic diversity survey

The Laurentian Great Lakes is centrally located in the walleye spe-
cies range and contain numerous and interconnected stocks of wall-
eye that colonized the lakes following the last ice age from three 
different glacial refugia: the Mississippian, Atlantic, and Missourian 
(Stepien et al.,  2009; Stepien & Faber,  1998). Walleye spawn on 
rocky reefs and in rivers throughout all five of the Great Lakes and 
are believed to exhibit moderate to strong natal spawning site fidel-
ity (Chen, Ludsin, et al., 2020). Regionally, walleye spawning stocks 
range from highly productive naturally reproducing stocks, such as 
those in the West Basin of Lake Erie, to recovering or recovered 
stocks supported by fish hatcheries, such as those in northwest-
ern Lake Superior (Vandergoot et al.,  2010; Wilson et al.,  2007). 
Sometimes both naturally reproducing and recovering stocks can be 
found within the same lake, such as the Ontario Grand River stock in 
Lake Erie (MacDougall et al., 2007). Therefore, to comprehensively 
survey walleye genetic diversity in the Great Lakes, it was important 
to include samples from as many known active walleye spawning 
stocks throughout the Great Lakes as possible. Samples of walleye 
fin clips and DNA were compiled from existing collections at col-
laborating institutions or collected for the purpose of this study dur-
ing routine spawning stock assessments. All samples were collected 
between the years 2000 and 2019 from mature individuals during 
the spawning season at one of 29 known spawning sites (Table 1). 
Special attention was paid to sampling locations in Lake Erie where 
walleye abundance is high and genetic differences among spawning 
sites are low (Chen, Euclide, et al., 2020; Stepien et al., 2012) and to 
known stocking sources or receiving populations (i.e., Oneida Lake 
that is the stocking source for Lake Ontario and Lake Gogebic that 
was stocked with the ancestral Saginaw Bay walleye stock).

An initial genetic survey was conducted for walleye from the 
Great Lakes using a subset of 45 of the compiled samples (8–10 in-
dividuals from each Great Lake). Putative loci and genotypes were 
identified de novo using RAD-sequencing. In brief, single nucleotide 
polymorphisms (SNPs) were identified by conducting PstI RAD-
sequencing (Ali et al., 2016). The program STACKS v2.3 (Rochette 
et al., 2019) was used to identify and genotype SNPs using the de 
novo pipeline, which was then filtered based on minor allele fre-
quency (MAF). Following marker identification and de novo geno-
typing, an early draft of the walleye genome was obtained from 
the Great Lake Genomics Center at the University of Wisconsin-
Milwaukee. Therefore, the alignment position on the draft ge-
nome was identified using bowtie2 version 2.2.4 (Langmead & 
Salzberg, 2012) and used as a filter to limit the linkage disequilibrium 
among panel loci by removing loci in close proximity to one another 
(personal communication Aurash Mohaimani, Angela Schmoldt, and 

Rebecca Klaper, Great Lakes Genomics Center; Table S1–S8). A more 
detailed description of the RAD-sequencing methods is outlined in 
Appendix S1.

Following MAF and alignment position filters, 129,281 SNPs re-
mained. Sequences for the 100,000 SNP loci, which contained the 
highest MAF and heterozygosity were submitted to ArborBioscience 
(Ann Arbor, MI) for capture bait development to create a Rapture 
panel. Capture baits were successfully designed for 99,636 loci (80 
nucleotide baits with 2 × tiling). Sequencing libraries (maximum of 
96 individuals per library) were then constructed for 1289 walleye 
spanning 29 walleye collection locations (Figure 1; Table 1) and bait 
captured following the approach outlined in Ali et al. (2016). These 
data were processed using STACKS v2.3 (Rochette et al.,  2019) 
and quality filtered using the population step in STACKS v2.3 and 
VCFtools 2.3 (Danecek et al., 2011) to remove 220 individuals and 
296,336 SNPs with poor genotyping rates (Table S2). Following fil-
ters, 44,261 of the baited loci with a genotype rate >70% across 
1069 individuals were retained that were sequenced to an average 
depth of coverage of 19X.

2.2  |  Marker quality screening for GTSeq panel 
development

Microhaplotypes were identified and genotyped for all 44,261 SNP 
loci in the datafile using a whitelist containing marker IDs for each 
locus and the population module of STACKS v2.3. The resulting 
microhaplotype-VCF file was then filtered using VCFtools to re-
move loci with >20% missing data (Danecek et al., 2011). Because 
the genotyping rate of microhaplotypes was lower than that of indi-
vidual SNPs, to maintain a consistent set of loci in the final dataset, 
any microhaplotype removed due to missing data was replaced with 
the genotype of the individual SNP call with the highest minor al-
lele frequency from the original 44,261 SNP datafile. Locus diversity 
was summarized with custom R scripts that used the DiveRsity and 
Adegenet R packages (Jombart, 2008; Keenan et al., 2013). Loci were 
sequentially removed as possible GTSeq panel candidates based on 
inbreeding coefficient (−0.2 < FIS < 0.2), SNP position (17 < SNP po-
sition <140 on the forward read), and number of alleles per locus 
(<11). These filters removed 27,723 loci, leaving 16,538 as possible 
GTSeq panel candidates.

2.3  |  Marker selection scenarios

Our objective was to create a GTSeq panel containing 400 to 600 
genetic markers. The number of potential markers was narrowed 
from 16,538 into five sets of 600 markers containing different 
numbers of markers that expressed high heterozygosity or allele 
frequency variance. High allele frequency differences (FST; Weir & 
Cockerham, 1984) are important for applications such as GSI (e.g., 
Ozerov et al., 2013), while high heterozygosity can be important for 
kinship analysis (e.g., Baetscher et al., 2018; Blouin, 2003). The five 
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scenarios included: (1) 600 loci with the highest FST and 0 markers 
chosen based on heterozygosity (FST600_mHE0); 450 loci chosen 
with the highest FST and 150 markers chosen based on heterozygo-
sity (FST450_mHE150); 300 loci chosen with the highest FST and 300 
markers chosen based on heterozygosity (FST300_mHE300); 150 
loci chosen with the highest FST and 450 markers chosen based on 
heterozygosity (FST150_mHE450); 0 loci chosen with the highest FST 
and 600 markers chosen based on heterozygosity (FST0_mHE600). 
Marker sets were then subjected to GSI and kinship analysis simula-
tions, and the panel mixture that performed well for both GSI and 
kinships was selected. GSI is frequently used for fisheries manage-
ment to define management units and to track movement, and to 
assess contributions of different stocks to a mixed harvest while 
kinship analysis is the basis of many management-focused activities, 

such as close-kin mark-recapture (CKMR) and parentage-based tag-
ging (Bravington et al., 2016; Schwartz et al., 2007). GSI simulations 
were conducted using Rubias (Moran & Anderson,  2019) and kin-
ship simulations were conducted using CKMRsim following nearly 
identical protocols as outlined in Bootsma et al.  (2020). The eight 
reporting units used for GSI simulations were defined based on prior 
knowledge of the system (i.e., existing jurisdictional and geographi-
cal breaks in the system) and included: Lake Ontario, the Ontario 
Grand River in Lake Erie, the East Basin of Lake Erie, the West Basin 
of Lake Erie, Lake Huron, Lake Michigan, the St. Mary's River, and 
Lake Superior (Figures S2 and S3). The FST450_mHE150 panel that 
showed intermediate performance was deemed the best general-
use selection scenario and used for subsequent panel design (see 
results; Figures S4 and S5).

TA B L E  1 Collection site number, name, and haplotype diversity estimates for the final GTSeq panel for walleye from the Great Lakes 
region of North America.

Site # Population N
Average number 
of alleles

Effective number 
of alleles Ho GIS

Markers out 
of HWE

1 Erie-Bournes Beach 14 2.27 1.75 0.47 −0.200 22

2 Erie-Cattaragus Creek 18 2.34 1.75 0.38 0.021 21

3 Erie-Chicken Island Reef 33 2.41 1.76 0.37 0.042 31

4 Erie-Detroit River 61 2.50 1.79 0.40 −0.026 34

5 Erie-Grand River, Ohio 13 2.27 1.76 0.40 −0.020 9

6 Erie-Maumee River 73 2.54 1.79 0.42 −0.079 50

7 Erie-Grand River, Ontario 60 2.44 1.73 0.36 0.017 37

8 Erie-Sandusky River 71 2.52 1.80 0.41 −0.049 32

9 Erie-Shorehaven 47 2.43 1.77 0.38 0.000 29

10 Erie-Lackawanna Shoal 24 2.38 1.76 0.41 −0.064 30

11 Erie-Tourssant Reef 36 2.46 1.79 0.44 −0.122 50

12 Erie-Van Buren Bay 49 2.47 1.77 0.38 −0.002 24

13 Erie-Zellerhouse Reef 47 2.45 1.77 0.38 0.016 31

14 Huron-Moon River 14 2.19 1.67 0.37 −0.005 14

15 Huron-Tittabawasee River 48 2.47 1.78 0.39 0.024 23

16 Michigan-Fox River 44 2.42 1.74 0.38 0.014 24

17 Michigan-Little Bay De Noc 41 2.33 1.67 0.35 0.018 20

18 Michigan-Muskegon River 48 2.38 1.68 0.35 0.020 27

19 Michigan-Wolf River 35 2.33 1.68 0.37 −0.017 20

20 Ontario-Bay of Quinte 32 2.36 1.76 0.42 −0.075 31

21 Ontario-Black River 21 2.27 1.69 0.35 0.039 20

22 Ontario-Oneida Lake 13 2.10 1.60 0.32 0.028 8

23 St. Clair-Clinton River 47 2.42 1.83 0.40 0.013 28

24 Superior-Black Sturgeon River 37 2.35 1.66 0.36 −0.022 14

25 Superior-Kakagon River (Bad 
River)

20 2.33 1.72 0.39 −0.012 18

26 Superior-Lake Gogebic 16 2.21 1.63 0.33 0.055 15

27 Superior-Nipigon Bay 31 2.32 1.68 0.33 0.097 38

28 Superior-St. Louis River 30 2.31 1.71 0.36 0.043 29

29 Superior-St. Marys River 46 2.44 1.74 0.37 0.027 32

Note: Sample size (N), average number of alleles, effective number of alleles, observed (HO), Nei's inbreeding coefficient (GIS), and the number of 
markers out of 500 significantly departed from HWE at an α of .05. Site numbers correspond to labels in Figure 1.
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2.4  |  Panel primer design

We selected 3X the number of loci in the 450:150 ratio of high FST 
to high microhaplotype heterozygosity for primer design to account 
for the loss of markers due to poor primer design. Primers were 
then designed for each marker using Primer3 v. 2.3 (Untergasser 
et al., 2012; Table S3). When more than one SNP was present at a 
locus, primers were designed to target as many SNPs as possible, but 
preference was given to the SNP with the highest minor allele fre-
quency. However, if targeting the SNP with the highest minor allele 
frequency excluded three or more SNPs, primers were redesigned 
to exclude the highest minor allele frequency SNP and instead tar-
get the group of 3+ SNPs, thereby retaining the microhaplotype. Of 
the markers investigated, quality primer pairs were designed for 793 
markers. Nine markers were removed due to potential off-target am-
plification or identical forward and reverse primers. Diversity statis-
tics were then used to select 600 markers from the remaining 784 
markers to retain 450 markers originally selected based on SNP FST 
and 150 markers originally selected based on microhaplotype HE. 
The panel of 600 markers was then re-assessed for GSI and par-
entage using identical protocols as preliminary screening to ensure 
that it performed similarly as the original FST450_mHE150 panel 
(Figures S4 and S5). Once satisfied, 6-bp plate and sample adapters 
were added to forward and reverse primer sequences, and oligonu-
cleotides for all 1200 primers were ordered from Integrated DNA 
Technologies (IDT, Coralville, Iowa).

2.5  |  Panel PCR optimization

The optimal multiplex combination of primer pairs was determined 
by conducting four sequential library preparation and sequenc-
ing runs on MiSeq Micro flow cells (paired-end 150 bp; 300 cycles). 
A single library was run for each sequencing run. GTSeq libraries 
were prepared using the standard GTSeq library preparation proto-
cols (Bootsma et al., 2020; Campbell et al., 2015). First, individuals 
were amplified in individual 7-μl PCRs containing 1.5  μl multiplex 
primer mixture (final working concentration of 0.25 μM/primer), 
3.5 μl Qiagen HotStar Taq Multiplex Plus DNA polymerase, primer 
mixture, and 2 μl DNA template. Next, plate (i7) and individual (i5) 
barcode adapters were ligated in a 10-μL PCR-containing 5 μl Qiagen 
HotStar Taq Multiplex Plus DNA polymerase, 1 μl of each i7 (10 μM) 
and 2 μl i5 barcodes (5 μM), and 2 μl of 3:17 diluted PCR product. 
The concentration of adapter-ligated PCR product was normalized 
using SequalPrep Normalization plates (Applied Biosystems™) ac-
cording to the manufacturer's protocol, pooled, and purified using 
a 0.65X followed by a 1.0X Beckman–Coulter Ampure bead cleanup 
and standard protocols outlined by Beckman-Coulter. The amount of 
DNA in purified libraries was quantified using fluorometry on a Qubit 
(Life Technologies), and product size was assessed using an Agilent 
Bioanalyzer. Libraries that met quality checks (>0.1 ng/μl and correct 
product size) were loaded onto a MiSeq Micro flow cell (300 cycles) at 
7 pM concentrations along with 10% PhiX spike (Illumina, Inc) and se-
quenced at either the University of Wisconsin Biotechnology Center 

F I G U R E  1 Geographical distribution of walleye spawning stock collection sites sampled for GTSeq panel design and major jurisdictional 
boundaries in the Great Lakes. Treated waters highlight regions with existing fishing access treaties between the United States and Great 
Lakes region tribal nations. Numbers correspond to site names listed in Table 1. Administrative boundaries were accessed from https://
www.glahf.org/data/ December, 2021.
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(Optimization run 1) or the University of Wisconsin-Milwaukee Great 
Lakes Genomics Center (Optimization runs 2–4). The data were de-
multiplexed by the sequencing core and sequencing reads associated 
with target SNPs were identified using the GTScore pipeline and the 
associated AmpliconReadCounter perl script and custom primer-probe 
file (v.1.3; github.com/gjmck​inney/​GTscore). The results of each se-
quencing run were summarized in MS Excel and analyzed using cus-
tom R Scripts using (R v.4.1; R Core Team, 2021; Wickham, 2009; 
Xiao,  2018). Primers associated with overamplified sequences and 
primers producing a high number of primer dimers or off-target reads 
(i.e., reads containing the primer sequence but not the target region) 
were removed iteratively in consecutive sequencing runs. Our target 
was to develop a mixture of primers that amplified a large number 
of markers evenly (i.e., similar depth of coverage across all markers). 
Therefore, we used the Shannon equitability index (H), which incor-
porates both richness (number of unique primer pairs remaining) and 
evenness of abundance (number of primer reads), as a measure of 
panel performance at each round of optimization. Values of H closer 
to 1 indicate a community with high evenness, therefore increases 
in H were defined as an increase in performance. The panel was 
deemed optimized once H was >0.8 (Table S4).

2.6  |  Final panel performance

Observed heterozygosity (HO), Nei's inbreeding coefficient (GIS; 
Nei, 1987), and Hardy–Weinberg equilibrium (HWE) was calculated 
for all markers in the final panel using Genodive v. 3 (Meirmans, 2020). 
Linkage disequilibrium among loci was measured by calculating the 
pairwise correlation coefficient (r2) among all SNPs in the final panel 
using the SNPrelate R package (Zheng et al., 2012). Deviation from 
HWE was estimated using a one-sided t-test at an uncorrected alpha 
(α) of .05 and Bonferroni corrected α of .0001. We observed a high 
degree of spatial genetic structure among the collections used to 
develop the panel. Therefore, we expected the number of loci out 
of HWE and in linkage disequilibrium to be moderately high in the 
final panel.

The panel's utility for GSI and kinship was evaluated using data 
from the initial Rapture baseline filtered to retain only microhaplo-
type loci included in the final GTSeq panel. GSI performance was 
evaluated for two different sets of reporting units. First, sites were 
grouped by the lake to evaluate GSI among lakes, and then, sites 
were grouped within each lake to determine GSI within each lake. 
The sample size for Moon River in Lake Huron was small (N = 14) 
after removing individuals with a low genotyping rate; therefore, 
samples were combined with Tittabawassee samples to create a sin-
gle Lake Huron reporting group. Additionally, because walleye from 
Lake St. Clair and western Lake Erie are known to mix with Lake 
Huron walleye (Brenden et al., 2015), samples from Lake St. Clair and 
the West Basin of Lake Erie were also included in the Lake Huron re-
porting group. Collections within all other lakes were analyzed sep-
arately. Pairwise Weir and Cockerham's FST was calculated among 

among-lake and within-lake reporting units as a metric of population 
structure (Meirmans, 2020; Weir & Cockerham, 1984).

Genetic stock identification simulations were conducted in 
Rubias using 99 replicate 100% leave-one-out simulations run using a 
mixture size of 200 individuals (Moran & Anderson, 2019). Expected 
assignment accuracy to collections within each lake was estimated 
using simulated sample mixtures in which 100% of the individuals 
are from one collection or reporting unit. Expected assignment ac-
curacy was determined based on the number of individuals correctly 
assigned to their true collection location. A low group membership 
(pofZ) score of >0.7 was used to assign individuals to collections. 
The influence of pofZ thresholds of 0.7 to 0.95 on assignment results 
was evaluated by estimating the average assignment accuracy and 
number of unassigned individuals of each reporting unit at 0.05 pofZ 
intervals (Figure S6). The difference in average assignment accuracy 
of reporting units (N = 24) between a pofZ threshold of 0.7 and 0.95 
was 1%. However, increasing pofZ to 0.95 led to a 1.8% increase in 
the number of unassigned individuals. Given the limited influence of 
pofZ threshold on the observed results, we chose to use a low pofZ 
threshold to retain as many assignment observations as possible. 
The proportion of correctly assigned individuals was calculated for 
each replicate and summarized to evaluate variance in assignment 
accuracy among all five lakes and among sampled spawning stocks 
within each lake. Stocks with high rates of misassignments (>10% 
on average) were investigated to determine where individuals were 
being misassigned.

Kinship simulations were conducted in CKMRSim independently 
within each lake using whole-lake compositions of allele frequency 
to assess the power for pairwise kinship inference. The R package 
CKMRsim (https://github.com/eriqa​nde/CKMRsim) uses a Monte 
Carlo sampling approach and importance-sampling to make pairwise 
relationship inferences based on multiallelic data (see Baetscher 
et al., 2019 for additional descriptions). By simulating sets of related 
and unrelated pairs of individuals based on provided allele frequency 
data, an expected log-likelihood ratio distribution of pairwise com-
parisons of individual kinship for different familial relationships (i.e., 
full-sibling, half-sibling, parent-offspring, or unrelated) is created. 
Overlap in log-likelihood ratio distributions can then be used to es-
timate false-positive rates (FPR) and false-negative rates (FNR) of 
relationship assignments based on a given set of markers and al-
lele frequencies. Because false-positive rates can greatly influence 
CKMR analyses (Bravington et al.,  2016; Waples & Feutry,  2022), 
estimates of error rates help to determine whether a set of mark-
ers has sufficient power to assign pairwise relationship status be-
tween two individuals while minimizing false-positive relationship 
assignment (i.e., assigning two individuals as related when they are 
in reality unrelated). False-positive detection rates were calculated 
by using allele frequency data from each lake to simulate 1000 full-
sibling (FS), half-sibling (HS), parent-offspring (PO), and unrelated 
(U) pairs (4000 total). Next, the log-likelihood of relatedness for a 
given pair of individuals was calculated for simulated related individ-
uals. The relationship between observed genotype pair probabilities 
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calculated for true related individuals (FS, HS, PO) was then com-
pared with the hypothesis of no relationship (U). These values then 
were used to calculate distributions of log-likelihoods of relatedness 
and to compute false-positive rates. False-positive rates for parent-
offspring, full-sibling, and half-sibling relationships were estimated 
at false-negative rates (per-pair rate of truly related individuals 
being inferred to be unrelated) ranging from 0.01 to 0.1. A range of 
false-negative rates is used as the acceptable ratio of false-positive 
to false-negative rates varies based on the research question. The 
results of this analysis were used as our measure of the GTSeq pan-
el's ability to be used for kinship analysis, with lower probabilities of 
false-positive errors indicating higher panel performance.

2.7  |  GTSeq genotyping performance

The sequencing consistency of the GTSeq panel genotyping was as-
sessed by comparing genotypes from the same 95 individuals se-
quenced independently in three different laboratories: University 
Wisconsin—Milwaukee (Milwaukee, WI, USA), USGS Great Lakes 
Science Center (GLSC; Ann Arbor, MI, USA), and the Ontario Ministry 
of Natural Resources and Forestry (OMNRF) aquatic genetics lab at 
Trent University (Peterborough, ON, CA).

Laboratories each prepared a GTSeq library using in-house proto-
cols and reagents and sequenced the library on a single MiSeq Micro 
flow cell (paired-end 150 reads; 300 cycles). Libraries were prepared 
at UWM and the GLSC using Small RNA Sequencing Primer adapters 
while sequencing at Trent was conducted using primers modified to 
include Nextera XT adapters. Sequencing data from all laboratories 
were processed identically using the GTScore pipeline to first pro-
duce summaries of the number of amplicon reads containing target 
amplicons (primers) and markers (probes) by individual and locus. 
Amplicon reads for each sample then were used to score genotypes 
for each locus based on the number of probe reads for each SNP and 
a maximum likelihood algorithm described in McKinney et al. (2018) 
that accounts for variance in allele dosage.

The consistency in sequencing output (i.e., amplification and 
subsequent sequencing of targeted genetic markers) among librar-
ies prepared at the UWM, GLSC, and OMNRF laboratories sepa-
rately was evaluated using the number of reads containing a primer 

sequence to the number of reads containing a probe sequence for a 
given marker (i.e., the exact 30-bp sequence flanking a known SNP 
or microhaplotype). Individual coverage was calculated as the total 
number of reads containing sequence data for both the primer and 
probe for a given marker divided by 500 (the total number of markers 
included). For each marker and individual, the data were analyzed as 
a proportion of primer reads to probe reads (here forward referred 
to as primer: probe proportion). The consistency in this proportion 
among datasets was evaluated using pairwise Pearson's correlations 
of marker-specific primer: probe proportion. Consistent amplification 
of the GTSeq panel was expected to result in a strong positive result 
and high correlation coefficient (r2). The relative differences in the 
individual or marker sequencing variance among preparations are 
described using the standard deviation in primer: probe proportion.

Genotypes were defined as “congruent” between two datasets 
if the same alleles were scored in both cases of a pairwise assess-
ment between laboratories for a given individual and locus. In other 
words, if individual-X contained an AG heterozygote score in both 
the UWM and GLSC datasets, the genotype was considered “con-
gruent” between these datasets. Congruency in scored genotypes 
among separate sequencing runs was evaluated in a pairwise fash-
ion. First, individuals that lacked genotype calls at 50% or more of the 
GTSeq markers were removed from the analysis. Then, the percent 
of identical genotype calls (e.g., a call that is scored as a heterozy-
gote in both datasets being compared) was calculated for individuals. 
One-way Analysis of Variance (ANOVA) was used to test whether 
the average percent of congruent genotypes differed between labo-
ratory pairs. We hypothesized that depth of coverage may influence 
genotype call accuracy, and therefore also tested whether average 
individual total read count across all three sequencing runs influence 
percent congruency using an ANOVA.

3  |  RESULTS

3.1  |  Panel selection

All five tested panel-marker combinations performed similarly for GSI 
to eight putative reporting units and kinship assignment of parent-
offspring and full-sibling pairs (Table 2). The FST_600_mHE0 panel 

TA B L E  2 Mean estimated assignment accuracy across eight reporting units (Lake Ontario, the Ontario Grand River in Lake Erie, the East 
Basin of Lake Erie, the West Basin of Lake Erie, Lake Huron, Lake Michigan, the St. Mary's River, and Lake Superior) and the estimated false-
positive rate (FPR) of full-sibling assignment used to compare between five potential panels at an accepted false-negative rate (FNR) of 0.01.

Panel High FST SNPs High HO microhaplotypes Mean assignment accuracy FPRFNR=0.01

FST_600_mHE0 600 0 92.7% 3.9 × 10−15

FST_450_mHE150 450 150 91.1% 1.9 × 10−18

FST_300_mHE300 300 300 91.0% 3.7 × 10−20

FST_150_mHE450 150 450 90.0% 1.7 × 10−23

FST_0_mHE600 0 600 89.2% 5.8 × 10−24

Note: Each panel contained different ratios of high FST SNPs and high heterozygosity (HO) microhaplotypes. The bolded panel was chosen for further 
optimization. More detailed figures of GSI and kinship are available in Appendix S1.
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8 of 15  |     EUCLIDE et al.

performed the best for GSI (mean assignment accuracy =  92.7%) 
but worst for kinship analysis (full-sibling FPR(FNR=0.01) = 3.8 × 10

−15). 
By contrast, the FST_0_mHE600 panel performed more poorly for 
assignment accuracy (mean assignment accuracy = 89.2%) and was 
the best for kinship analysis (full-sibling FPR(FNR=0.01) = 5.8 × 10

−24). 
Based on these results, we chose one of the intermediate panels 
(FST_450_mHE150), which appeared to perform moderately well 
for both GSI (mean assignment accuracy = 91.1%) and kinship (full-
sibling FPR(FNR=0.01) = 2.3 × 10

−18).

3.2  |  Panel-marker diversity

Following marker quality filtration, panel design, and multiplex op-
timization the final GTSeq panel contained 500 markers containing 
a total of 796 SNPs that could be grouped into 197 microhaplo-
type loci, which each contained more than one SNP and 303 SNP 
loci. The Shannon diversity of panel amplification changed from 
0.28 after the first major round of optimization to 0.88 for the 
final panel, indicating a large increase in the evenness of sequenc-
ing while still maintaining a high level of marker richness. 269 loci 
aligned to unique contigs in the draft genome, and the remaining 
231 loci aligned to 109 different contigs averaging 2.1 loci per-contig 
and an average distance between loci aligned to the same contig of 
375,627 bp. Average pairwise linkage disequilibrium (pairwise r2) 
among SNPs on different loci was 0.09; however, 25% of SNPs as-
sessed contained r2 > 0.3 with at least one other SNP in the dataset. 
Microhaplotypes contained an average of 4.5 alleles (95% CI = 4.3 
to 4.7), average effective number of alleles of 1.9 (95% CI = 1.8 to 
2.0), and average observed heterozygosity of 0.45 (95% CI = 0.44 
to 0.48). All SNPs contained two alleles, average effective number 
of alleles of 1.5 (95% CI = 1.48 to 1.53), and average observed het-
erozygosity of 0.33 (95% CI = 0.32 to 0.34). Additional breakdown of 
marker and population-specific diversity can be found in Tables S5 
and S6. When looking at all 500 markers, the overall FST of mark-
ers among collections was 0.126 (95% CI = 0.122 to 0.130) and the 
observed heterozygosity was 0.38 (95% CI = 0.37 to 0.39). Markers 
contained an average of 2.98 alleles (95% CI = 2.85 to 3.13; min = 2; 
max = 10) with an effective number of alleles of 1.67 (95% CI = 1.63 
to 1.71). Markers had similar numbers of alleles, heterozygosity, and 
GIS among collections (Table 1). The GIS was close to zero in all collec-
tions (overall GIS = −0.008; 95% CI = −0.013 to −0.004), and a maxi-
mum of 10% of loci departed significantly from HWE at any given 
collection (α =  .05). No loci were significantly out of HWE once a 
Bonferroni correction was applied (α = .0001).

3.3  |  Among-lake genetic stock identification

Average pairwise FST among Great Lakes was 0.083, the smallest 
distance was between Lake St. Clair and Lake Erie (FST = 0.008) and 
the largest was between Lake Erie and Lake Superior (FST = 0.169; 
Table S7). Average assignment accuracy of GSI to lake was greater 

than 95% for Lake Ontario (100%), Lake Erie (99%), Lake Michigan 
(97%), and Lake Superior (95%). Average assignment accuracy was 
less than 95% for Lake Huron (76%) with misassignments of indi-
viduals to Lake Michigan (9.8%), Lake St. Clair (6.4%), Lake Superior 
(3.5%), and Lake Erie (1.7%). Average assignment accuracy was the 
lowest for the Clinton River in Lake St. Clair (10%) with misassign-
ments of individuals to Lake Erie (68%), Lake Michigan (10%), and 
Lake Huron (6.5%).

3.4  |  Within-lake genetic stock identification

To ensure that the final GTSeq panel could be used effectively within 
smaller jurisdictions throughout the Great Lakes, we estimated local 
GSI using mixture analysis and kinship within each of the Great 
Lakes. Within-lake FST was 0.083 when averaged across all report-
ing group pairwise comparisons (Table S7). Among-group pairwise 
FST was lowest among Lake Erie (average FST = 0.049) and highest 
in Lake Michigan (average FST = 0.097). Greater than 98.7% of in-
dividuals were assigned to at least one collection with a pofZ > 0.7. 
Of individuals with a pofZ score > 0.7, 80% were correctly assigned 
to their true collection location (Figure  2). Fox River in the Lake 
Michigan basin had particularly low GSI accuracy (mean = 54%). This 
was largely due to 35% of individuals being misassigned to the Wolf 
River, which is connected to the Fox River through Lake Winnebago 
(pairwise FST = 0.011). The Kakagon River and Nipigon Bay in the 
Lake Superior basin also had noticeably lower GSI accuracy than 
other collections (mean = 75%; and 77%). Walleye from the Kakagon 
River was primarily misassigned to the nearby St. Louis River (pair-
wise FST = 0.022), while Nipigon River fish were misassigned to mul-
tiple sites including the Kakagon River (7%; pairwise FST = 0.066), 
St. Louis River (7%; pairwise FST = 0.068), and St. Marys River (9%; 
pairwise FST = 0.091). Average assignment accuracy at other collec-
tions was higher than 90% but did vary among consecutive leave-
one-out simulations.

3.5  |  Within-lake kinship assignment

To evaluate how well the GTSeq panel performed for kinship analy-
sis, we compared estimates of false-positive pairwise relationship 
assignments for full-sibling, parent-offspring, and half-sibling rela-
tionships simulated from allele frequency distributions within each 
lake. False-positive rates for full-sibling and parent-offspring rela-
tionships were less than 1 × 10−11 at an acceptable false-negative 
rate of 0.01 (Figure 3). This indicates that the ability to distinguish 
between unrelated pairs and full-sibling or parent-offspring pairs 
was high. False-positive rates differed slightly among lakes and 
were highest in lakes Erie and Huron, and lowest in Lake Ontario. 
However, in all cases, we concluded that the maximum false-positive 
rate for full-sibling and parent-offspring pairs should be sufficiently 
low for most applications. The false-positive rate for distinguishing 
true half-siblings from unrelated pairs was substantially higher and 
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ranged from 1 × 10−2 to 3 × 10−2 (FNR = 0.01) to 6 × 10−4 to 6 × 10−4 
(FNR = 0.1). About 1 out of every 100 to 300 observations can be 
expected to be false positives when an FNR threshold of 0.01 is 
used.

3.6  |  Variation among laboratories

A similar primer: probe read coverage was achieved by the GLSC 
and UWM laboratories (UWM =  66.9X; GLSC =  77.5X). This was 
substantially higher than the primer: probe read coverage achieved 

by the OMNRF laboratory (OMNRF  =  16.9X). Sequencing data 
produced by OMNRF contained a much higher number of off-
target reads per individual (average off-target reads per individual: 
OMNRF = 35,593.2) compared with UWM or GLSC (UWM = 4981.6; 
GLSC = 6965.8).

The primer: probe proportion of each marker was positively 
correlated among runs from different laboratories suggesting that 
marker amplification and sequencing performed similarly between 
sequencing replicates (Figure S7). The correlation was weaker be-
tween OMNRF and UWM or GLSC (r(434)  =  .73, p < .001 and 
r(434) = .72, p < .001) than between GLSC and UWM (r(468) = .89, 

F I G U R E  2 The estimated genetic 
stock identification accuracy for each 
within-Lake reporting unit (x-axis) for the 
final GTSeq panel containing 500 SNP 
and microhaplotype markers. Reporting 
units are colored according to their 
corresponding Great Lake. Each point 
represents the proportion of individuals 
correctly assigned with a (pofZ) score of 
>0.7 to a given reporting unit in a single 
leave-one-out 100% mixture simulation 
(N = 99).

F I G U R E  3 The change in false-positive detection rates (i.e., the rate of true-unrelated pairs being identified as full-sibling [FS], half-sibling 
[HS], or parent-offspring [PO] pairs) for 10 false-negative rates (0.01–0.1; i.e, the rate of true full-sibling, half-sibling, or parent-offspring 
pairs being identified as unrelated pairs) estimated separately for each lake. Note that the y-axis differs between plots.
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p < .001). Amplification and sequencing performance of individuals 
was less consistent among laboratories than markers (Figure  S8). 
When primer: probe proportion was summarized by the individual, 
there was little correlation among sequencing runs (OMNRF to UWM 
r(94) = −.10, p = .316; OMNRF to GLSC r(94) = .42, p < .001; UWM to 
GLSC r(94) = .11, p = .297). While individual primer: probe proportion 
was not strongly correlated among runs, the variance (standard de-
viation [SD]) in primer: probe proportion among individuals within the 
same sequencing run was lower (SDUWM = 0.12, SDOMNRF = 0.03, 
SDGLSC = 0.10) than among markers (SDUWM = 0.20, SDOMNRF = 0.19, 
SDGLSC = 0.19).

Individuals were successfully genotyped for 90% of markers 
at UWM (SD = 10.5%) and GLSC (SD = 6.3%) and 63% at OMNRF 
(SD =  9.9%). The average individual congruence between shared 
genotype calls among laboratories ranged from a low of 94% be-
tween UWM and OMNRF to a high of 97% between UWM and GLSC 
(Table 3). Congruence was slightly better for SNPs (95% to 98%) than 
microhaplotypes (93% to 96%). The range of individual congruence 
was large (76% to 99.8%). Average individual congruence differed 
among laboratories (ANOVA p = 6.8 × 10−7, F2, 262 = 1.3) with indi-
viduals from OMNRF tending to have lower congruence with UWM 
and GLSC than GLSC and UWM had with each other (Figure  4). 
Genotype congruence was not influenced by individual coverage 
(ANOVA p = .7; F1, 263 = 0.14), suggesting that depth of coverage may 
not be a principal factor influencing genotype congruence.

4  |  DISCUSSION

Interjurisdictional natural resource research and conservation 
rely on an ability to integrate data and de-centralize work pursu-
ing research objectives. The genotyping-in-thousands sequencing 
(GTSeq) panel that we created for walleye provides an efficient and 
consistent method of collecting genetic data on walleye of Great 
Lakes lineages for fisheries research and management purposes. 
We demonstrate that SNP and microhaplotype genotypes from the 
500 markers included in our GTSeq panel could be used to: (1) as-
sign individuals to most major walleye stocks in each of the Great 
Lakes with >90% accuracy; (2) assign parent-offspring, full-sibling, 
and half-sibling kinship relationships with low false-positive rates of 
detection; and (3) reproduce genotypes in separate sequencing runs 
on different sequencers at different facilities on average > 94% of 
the time.

4.1  |  Predicted performance for fisheries 
applications

Identification of the geographical source of a sample of unknown 
origin has important implications for both management (Valenzuela-
Quiñonez, 2016) and conservation biology (Zhang et al., 2020). By 
targeting genetic markers with high diversity and among-collection 
allele frequency variability, we created a multi-use GTSeq panel that 

should perform adequately for most walleye GSI studies in major 
Great Lakes jurisdictions. Stock identification and structure is a key 
management objective for several major walleye population as-
semblages throughout the Great Lakes including Lake Erie (Euclide, 
MacDougall, et al.,  2021), Saginaw Bay, Lake Huron (Brenden 
et al., 2015), Green Bay, Lake Michigan (Dembkowski et al., 2018), 
and Lake Superior (Homola, unpublished data). Our analysis shows 
that the panel should perform sufficiently well in each of these 
regions to assign individuals to specific spawning reefs/sites as in 
Lake Superior or to groups of sites such as the “West Basin” vs. “East 
Basin” of Lake Erie with >90% accuracy. Importantly, this means that 
this single marker panel could be used to facilitate mixed-stock as-
signment and recovery programs for walleye in many different areas. 
Data collected from these regional studies could be shared to iden-
tify long-distance migrants and larger spatial patterns in movement 
and gene flow.

Future generation and sharing of new data by researchers using 
this GTSeq panel could help to improve GSI and kinship assignment 
accuracy. Increasing the number of sites and samples included in 
population baselines increases the accuracy of population allele 
frequency estimates (Wood et al., 1987). In our study, sample sizes 
of our baseline dataset were variable but generally included greater 
than 30 individuals from a given spawning population. The high GSI 
and kinship accuracy at the lake and collection levels suggest that 
our samples provided an adequate baseline for common manage-
ment applications. However, additional sampling and genotyping 
from new sites and new individuals from collections with low sample 
sizes (N < 30) would improve allele frequency estimates, especially 
for microhaplotype data. The importance of sample size is exempli-
fied by the GSI accuracy in Lake Erie, where the pairwise FST among 
reporting groups is low compared with the rest of the Great Lakes, 
but GSI accuracy was still greater than 90%, which we attribute to 
the large sample sizes available for those reporting groups. However, 
increasing the baseline dataset through data sharing must be done 
with caution. Our results indicate that genotype congruency was 
not 100% among separate sequencing runs. Therefore, the use of 
reference samples and continued assessments of GTSeq panel gen-
otype accuracy would be necessary to ensure that there is consis-
tency in genotype scoring between the existing baseline and newly 
added samples. Extensive baseline genotyping and development of 
allele frequency reference samples are important steps in the de-
velopment of standardized marker panels (Seeb et al., 2007; Stott 
et al., 2010). Therefore, the present panel should be viewed as the 
starting place that will be improved with ongoing collaboration and 
continued optimization.

One of the major benefits of including microhaplotype loci in 
panel construction is that they provide multiallelic markers that can 
facilitate kinship and pedigree analysis (Baetscher et al., 2018). Our 
data demonstrated that microhaplotypes did contain higher genetic 
diversity than biallelic SNPs, which contributed to accurate kinship 
assignment for walleye throughout the Great Lakes. However, mi-
crohaplotypes also contained higher inter-laboratory scoring errors. 
These data could provide new opportunities to assess the abundance 
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of local walleye populations using genetic techniques such as close-
kin mark-recapture (CKMR) and rarefaction, which benefit from mul-
tiallelic markers (Bravington et al., 2016; White et al., 2022).

Prior to the application of the present panel to kinship studies, 
there are several reasons why additional assessments of kinship 
for target populations will be necessary. First, the false-positive 
rates of detection for half-siblings were substantially higher than 
for parent-offspring and full-sibling identification in simulations. 
Misassignment of half-siblings can be an issue for CKMR when 
full-sibling and parent-offspring pairs may be uncommonly encoun-
tered in sample sets (Waples & Feutry,  2022). Second, our analy-
sis focused on determining false-positive rates of misassigning an 
unrelated pair as a related pair. However, the majority misassign-
ments are likely to occur between different types of related pairs 
(e.g., misassigning half-siblings as full-siblings). Third, about a quarter 
of the SNP markers in the panel appear to be in moderate linkage 
disequilibrium with at least one other locus in the panel. Given the 
large physical distance between markers based on alignment to the 
draft walleye genome, we suggest that much of this linkage is the 
result of population structure and not physical linkage among loci. 
Nonetheless, power assessments of kinship assignment can become 
inflated when linked loci are included (Huang et al., 2004). Thus, re-
searchers should conduct their own power assessments and linkage 

disequilibrium assessments using samples collected from their study 
area to determine the statistical power of the panel prior to large-
scale application.

4.2  |  Interjurisdictional collaboration

Most fisheries management and research activities in the Great 
Lakes are decentralized and decisions are based on data pro-
duced from each lake's surrounding jurisdictional fisheries agen-
cies. Therefore, the creation of a standardized resource is only 
the first step towards unifying walleye research and stock moni-
toring throughout the Great Lakes region (Sard et al.,  2020; Stott 
et al.,  2010). Long-term collaboration among laboratories will be 
required to ensure that data produced separately is consistent and 
comparable. We demonstrated that most genotype calls were con-
sistent among independent sequencing runs; however, discrepan-
cies can be expected. For example, sequencing data produced from 
OMNRF contained fewer reads that could be assigned to any of the 
target markers, and this led to a lower overall genotyping rate for 
individuals in this dataset. We were unable to identify the reason for 
the lower sequencing quality obtained from the OMNRF laboratory; 
however, we predict that it is likely associated with slight differences 

TA B L E  3 Among-laboratory genotype congruence statistics for individuals with a genotype rate greater than 50% for all types of markers 
(All), microhaplotypes (mhaps), and single nucleotide polymorphisms (SNPs).

Comparison

Median Mean (SD) Minimum–maximum

All Mhaps SNPs All Mhaps SNPs All Mhaps SNPs

UWM vs. GLSC 98.6 97.8 99.1 96.8 (4.0) 96.3 (3.8) 97.7 (3.1) 76.0–99.8 85.0–100.0 88.0–100.0

UWM vs. OMNRF 95.9 94.3 96.8 93.9 (4.3) 93.2 (4.3) 94.9 (4.4) 81.4–98.6 78.5–99.0 81.5–99.6

OMNRF vs. GLSC 96.1 94.9 97.0 94.2 (4.4) 93.2 (4.8) 95.2 (4.3) 83.0–98.7 75.0–99.2 83.3–99.6

Note: Values are calculated from the percentage of identical called genotypes compared between the same individuals sequenced three separate 
times at the University of Wisconsin—Milwaukee (UWM), the Great Lakes Science Center (GLSC), and Ontario Ministry of Natural Resources and 
Forestry (OMNRF). Standard deviation (SD) of the mean is shown in parentheses.

F I G U R E  4 Pairwise percent of 
identical genotype calls (y-axis) made by 
individual laboratories (x-axis) between 
sequencing runs conducted independently 
at the Ontario Ministry of Northern 
Development, Mines, Natural Resources 
and Forestry (OMNRF) laboratory at Trent 
University, the University of Wisconsin-
Milwaukee (UWM) and the USGS Great 
Lakes Science Center, Ann Arbor MI 
(GLSC). The dashed red line denotes 
95% congruence. Individuals are ordered 
approximately by percent matching calls 
from highest to lowest.
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in laboratory protocols. While OMNRF data were generated using 
Nextera XT adapter instead of the Small RNA Primer used at UWM 
and the GLSC, we believe it is unlikely that this led to major differ-
ences in sequencing quality as the Nextera XT adapter is compatible 
with the Illumina MiSeq technology (Illumina, San Diego, CA, USA). 
Several individuals in our dataset showed consistently lower congru-
ency, but we did not find any clear relationship with reading counts 
or primer: probe, suggesting that other factors may influence individ-
ual congruency. Further publications of GTSeq genotype error rates 
and the establishment of a reference sample database may help to 
increase consistency among laboratories. Similar approaches have 
been successful for microsatellite panels (Seeb et al., 2007; Stott 
et al., 2010) and have begun to be used for GTSeq panels (Bohling 
et al., 2021; Hayward et al., 2022). However, the appropriate use of 
positive and negative controls should help account for batch effects 
in future studies.

The need for standardized resources that facilitate interjurisdic-
tional research is a constant across natural resource conservation 
and management. Here we respond to that need by developing a 
new genetic resource that will facilitate population structure and 
connectivity research of one of the most important fisheries in the 
Great Lakes region of the United States and Canada, walleye. Our 
panels and necessary resources have been made publicly available 
through this publication (Dryad: https://doi.org/10.5061/dryad.
xd254​7dmg). We showed that the GTSeq panel provides high assign-
ment accuracy for major walleye stocks in each of the Great Lakes, 
low false-positive kinship assignment for full-sibling and parent-
offspring pairs, and >95% genotype congruence among subsequent 
sequencing runs. We hope that future studies using this research will 
continue to improve panel performance and add to ongoing collabo-
ration to the benefit of walleye fisheries in North America.
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