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Abstract
Conservation	and	management	professionals	often	work	across	jurisdictional	bound-
aries	 to	 identify	 broad	 ecological	 patterns.	 These	 collaborations	 help	 to	 protect	
populations	whose	 distributions	 span	 political	 borders.	 One	 common	 limitation	 to	
multijurisdictional	collaboration	is	consistency	in	data	recording	and	reporting.	This	
limitation	can	impact	genetic	research,	which	relies	on	data	about	specific	markers	in	
an	organism's	genome.	Incomplete	overlap	of	markers	between	separate	studies	can	
prevent	direct	comparisons	of	results.	Standardized	marker	panels	can	reduce	the	im-
pact	of	this	issue	and	provide	a	common	starting	place	for	new	research.	Genotyping-	
in-	thousands	(GTSeq)	is	one	approach	used	to	create	standardized	marker	panels	for	
nonmodel	organisms.	Here,	we	describe	the	development,	optimization,	and	early	as-
sessments	of	a	new	GTSeq	panel	for	use	with	walleye	(Sander vitreus)	from	the	Great	
Lakes	region	of	North	America.	High	genome-	coverage	sequencing	conducted	using	
RAD	capture	provided	genotypes	for	thousands	of	single	nucleotide	polymorphisms	
(SNPs).	From	these	markers,	SNP	and	microhaplotype	markers	were	chosen,	which	
were	informative	for	genetic	stock	identification	(GSI)	and	kinship	analysis.	The	final	
GTSeq	panel	contained	500	markers,	including	197	microhaplotypes	and	303	SNPs.	
Leave-	one-	out	GSI	 simulations	 indicated	 that	GSI	 accuracy	 should	be	greater	 than	
80%	in	most	jurisdictions.	The	false-	positive	rates	of	parent-	offspring	and	full-	sibling	
kinship	identification	were	found	to	be	low.	Finally,	genotypes	could	be	consistently	
scored	among	separate	sequencing	runs	>94%	of	the	time.	Results	indicate	that	the	
GTSeq	panel	that	we	developed	should	perform	well	for	multijurisdictional	walleye	
research throughout the Great Lakes region.
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1  |  INTRODUC TION

Effective	 conservation	 of	 biological	 diversity	 requires	 collabora-
tive	 research	 to	 inform	conservation	or	natural	 resource	planning.	
In	 many	 cases,	 this	 involves	 working	 across	 political	 boundaries	
and	merging	 datasets	 generated	 in	 different	 laboratories	 to	 iden-
tify	broad	ecological	patterns	undetectable	at	a	more	regional	scale	
(Jay	et	al.,	2016;	Margerum,	2008).	Unfortunately,	merging	indepen-
dent	datasets	 is	often	 impeded	when	studies	do	not	share	a	com-
mon	methodology	(de	Groot	et	al.,	2015;	Fairweather	et	al.,	2018; 
Hunter	et	al.,	2020).	This	can	be	an	issue	for	genetic	studies,	which	
frequently	generate	marker	sets	de	novo	for	each	experiment	(e.g.,	
genotyping-	by-	sequencing;	 restriction	 site-	associated	 DNA	 se-
quencing	[RAD-	seq])	or	use	laboratory-	specific	protocols	or	marker	
panels	 (e.g.,	 microsatellite	 genotyping)	 that	 result	 in	 genotype	
scoring	discrepancies	when	datasets	are	merged	(Goh	et	al.,	2017; 
Pasqualotto	et	al.,	2007).	Without	standardized	methods	and	marker	
panels,	 genetic	data	generated	 from	 independent	 laboratories	can	
be	difficult	or	impossible	to	merge,	limiting	opportunities	for	collab-
oration	and	hampering	the	incorporation	of	molecular	resources	into	
natural resource planning.

Establishing	 standardized	 marker	 panels	 is	 important	 because	
genetic	data	provide	insight	into	population	biology	and	connectiv-
ity,	 recruitment	 dynamics,	 assessments	 of	 historical	 demography,	
and	 population-	specific	 mortality,	 which	 can	 take	 place	 across	 a	
large	geographical	area	(Allendorf	et	al.,	2010;	Benestan	et	al.,	2016).	
Therefore,	 collaboration	 among	 researchers	 is	 often	 necessary	 to	
extend	population	genetic	research	beyond	a	local	scale	(McKinney	
et al., 2020;	Ruzzante	et	al.,	1999).	Historically,	standardized	marker	
panels	 for	 nonmodel	 species	 have	 mostly	 included	 microsatellite	
panels,	 or	more	 recently,	 TaqMan	 assays,	which	 require	 extensive	
laboratory	validation	to	ensure	genotype	accuracy	(Ellis	et	al.,	2011; 
Hui	et	al.,	2008;	Seeb	et	al.,	2007).	Data	collected	using	these	types	
of	resources	have	enabled	managers	to	work	collaboratively	to	 in-
form	policies	structured	around	a	species	or	population	boundary,	
rather	than	a	political	or	jurisdictional	boundary	(Homola	et	al.,	2019; 
White	et	al.,	2021).	The	development	of	new	marker	panels	for	com-
mon	study	organisms	that	are	less	reliant	on	intensive	laboratory	val-
idation	than	microsatellite	panels	could	benefit	many	species.

Standardized	 resources	may	 particularly	 benefit	 the	 conserva-
tion	of	mobile	species	that	frequently	cross	political	boundaries	(e.g.,	
border	waters	of	the	Laurentian	Great	Lakes	(Hildebrand	et	al.,	2002)	
or	 transboundary	 conservation	 regions	 such	 as	 the	 Kavango–	
Zambezi	 Transfrontier	 Conservation	Area	 (KAZA)	 in	Africa	 or	 the	
Amazon	 River	 basin	 in	 South	 America;	 Mena	 et	 al.,	 2020;	 Stoldt	
et al., 2020).	Species	in	these	transboundary	regions	are	often	man-
aged	by	multiple	agencies	that	conduct	research	separately	but	must	
work	collaboratively	to	protect	the	entire	population.	Sequencing-	
based	genotyping	panels,	such	as	genotyping-	in-	thousands	(GTSeq),	
are	 becoming	 an	 increasingly	 accessible	 approach	 for	 nonmodel	
organisms	 (Campbell	 et	 al.,	2015;	Meek	&	Larson,	2019).	Because	
this	approach	uses	DNA	sequencing,	which	provides	exact	nucleo-
tide	arrangements,	the	resulting	genotypes	can	be	more	easily	and	

consistently	compared	among	studies	than	other	PCR-	based	assays.	
Other	 approaches	 such	 as	microsatellite	 DNA	markers,	 which	 re-
quire	manual	allele	calling,	are	more	vulnerable	to	human	error	and	
laboratory	 variability,	 making	 inter-	laboratory	 comparisons	 more	
difficult.	The	adoption	of	amplicon	sequencing	panels	by	laborato-
ries	with	a	purview	of	conducting	research	in	major	transboundary	
regions	 can	help	 to	 facilitate	 collaboration	and	generate	data	 that	
can	be	used	for	large-	scale	meta-	analyses	or	long-	term	monitoring	
of	populations	dynamics	and	genetic	diversity	(Hayward	et	al.,	2022; 
McCane	et	al.,	2018).	However,	published	GTSeq	panels	are	still	un-
available	 for	most	 species	 and	 can	 be	 time-	consuming	 to	 develop	
and	implement.

Many	of	the	developed	GTSeq	panels	are	for	species	of	fisheries	
management	interest,	such	as	Pacific	salmon	(e.g.,	Chang	et	al.,	2021; 
McKinney	 et	 al.,	 2020)	 and	 trout	 (Bohling	 et	 al.,	 2021).	 Another	
species	with	a	 recently	developed	GTSeq	panel	 is	walleye	 (Sander 
vitreus;	Bootsma	et	al.,	2020).	Walleye	is	a	highly	mobile	predatory	
species	of	fish	native	to	North	America,	with	an	expansive	endemic	
range	spanning	most	of	 the	United	States	and	Canada	 (Figure	S1–	
S8;	Billington	et	al.,	2011).	There	are	many	applications	for	a	genetic	
panel	 for	 walleye,	 including	 tracking	 hatchery	 outplants,	 genetic-	
informed	domestication	of	aquaculture	strains,	population	genetics,	
and	genetic	stock	identification	(GSI)	of	natural	populations	(Euclide,	
Robinson, et al., 2021).	 The	 GTSeq	 panel	 developed	 by	 Bootsma	
et	al.	 (2020)	was	created	 specifically	 for	walleye	 in	 inland	 lakes	 in	
the	Mississippi	River	basin	of	Wisconsin	 and	Minnesota	 (Bootsma	
et al., 2020, 2021).	However,	allele	frequencies	and	genetic	diversity	
differ	between	Mississippi	River	basin	and	Great	Lakes	walleye	pop-
ulations.	Therefore,	there	has	been	some	concern	that	an	additional	
marker	panel	may	be	necessary	to	inform	the	conservation	and	man-
agement	of	walleye	populations	with	broader	Great	Lakes	ancestry.

Walleye	 stocks	 support	extensive	 recreational	 and	commercial	
harvest	managed	by	numerous	First	Nation	and	tribal	communities,	
Canadian	provincial	agencies,	and	eight	American	states	surround-
ing	the	Great	Lakes.	Walleye	can	swim	hundreds	of	kilometers	per	
year,	which	means	 that	walleye	 produced	 in	 one	 jurisdiction	 con-
tributes	 to	 fishing	 opportunities	 in	 other	 jurisdictions	 (Brenden	
et al., 2015;	Hayden	et	al.,	2014;	Matley	et	al.,	2020).	With	so	many	
sources	of	walleye	recruitment	and	mortality,	tracking	walleye	pro-
ductivity	in	the	Great	Lakes	has	been	a	priority	(Wills	et	al.,	2020).	
Genetics	is	one	effective	method	to	track	walleye	productivity	and	
stock	connectivity;	however,	previous	work	has	relied	on	microsat-
ellite	 panels	 or	 large	 single-	use	 genotyping-	by-	sequencing	 studies	
(Chen,	 Euclide,	 et	 al.,	2020; Garner et al., 2013),	 neither	of	which	
provide	the	compositional	consistency	necessary	to	merge	datasets	
produced	in	different	laboratories.

Here	we	describe	the	multi-	omic	development	and	outline	appli-
cations	of	a	new	GTSeq	panel	developed	from	29	walleye	spawning	
populations	in	the	Great	Lakes.	The	objectives	of	our	study	were	to:	
(1)	develop	a	general-	use	GTSeq	panel	that	 includes	genetic	diver-
sity	from	major	walleye	stocks	in	state,	provincial,	and	tribal	manage-
ment	jurisdictions	in	the	Great	Lakes,	(2)	evaluate	the	effectiveness	
of	the	panel	to	conduct	mixed-	stock	analysis	and	pedigree/kinship	
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analysis	 throughout	 the	Great	Lakes	and	within	each	 lake,	 and	 (3)	
quantify	genotype	call	variation	among	laboratories.

2  |  METHODS

2.1  |  Study system and genetic diversity survey

The	Laurentian	Great	Lakes	is	centrally	located	in	the	walleye	spe-
cies	range	and	contain	numerous	and	interconnected	stocks	of	wall-
eye	 that	 colonized	 the	 lakes	 following	 the	 last	 ice	 age	 from	 three	
different	glacial	refugia:	the	Mississippian,	Atlantic,	and	Missourian	
(Stepien	 et	 al.,	 2009;	 Stepien	 &	 Faber,	 1998).	 Walleye	 spawn	 on	
rocky	reefs	and	in	rivers	throughout	all	five	of	the	Great	Lakes	and	
are	believed	to	exhibit	moderate	to	strong	natal	spawning	site	fidel-
ity	(Chen,	Ludsin,	et	al.,	2020).	Regionally,	walleye	spawning	stocks	
range	from	highly	productive	naturally	reproducing	stocks,	such	as	
those	 in	 the	West	 Basin	 of	 Lake	 Erie,	 to	 recovering	 or	 recovered	
stocks	 supported	 by	 fish	 hatcheries,	 such	 as	 those	 in	 northwest-
ern	 Lake	 Superior	 (Vandergoot	 et	 al.,	 2010;	Wilson	 et	 al.,	 2007).	
Sometimes	both	naturally	reproducing	and	recovering	stocks	can	be	
found	within	the	same	lake,	such	as	the	Ontario	Grand	River	stock	in	
Lake	Erie	(MacDougall	et	al.,	2007).	Therefore,	to	comprehensively	
survey	walleye	genetic	diversity	in	the	Great	Lakes,	it	was	important	
to	 include	 samples	 from	 as	many	 known	 active	walleye	 spawning	
stocks	throughout	the	Great	Lakes	as	possible.	Samples	of	walleye	
fin	 clips	 and	DNA	were	 compiled	 from	existing	 collections	 at	 col-
laborating	institutions	or	collected	for	the	purpose	of	this	study	dur-
ing	routine	spawning	stock	assessments.	All	samples	were	collected	
between	the	years	2000	and	2019	from	mature	 individuals	during	
the	spawning	season	at	one	of	29	known	spawning	sites	 (Table 1).	
Special	attention	was	paid	to	sampling	locations	in	Lake	Erie	where	
walleye	abundance	is	high	and	genetic	differences	among	spawning	
sites	are	low	(Chen,	Euclide,	et	al.,	2020;	Stepien	et	al.,	2012)	and	to	
known	stocking	sources	or	receiving	populations	(i.e.,	Oneida	Lake	
that	is	the	stocking	source	for	Lake	Ontario	and	Lake	Gogebic	that	
was	stocked	with	the	ancestral	Saginaw	Bay	walleye	stock).

An	 initial	 genetic	 survey	 was	 conducted	 for	 walleye	 from	 the	
Great	Lakes	using	a	subset	of	45	of	the	compiled	samples	(8–	10	in-
dividuals	from	each	Great	Lake).	Putative	loci	and	genotypes	were	
identified	de	novo	using	RAD-	sequencing.	In	brief,	single	nucleotide	
polymorphisms	 (SNPs)	 were	 identified	 by	 conducting	 PstI	 RAD-	
sequencing	 (Ali	et	al.,	2016).	The	program	STACKS	v2.3	 (Rochette	
et al., 2019)	was	used	to	 identify	and	genotype	SNPs	using	the	de	
novo	 pipeline,	 which	was	 then	 filtered	 based	 on	minor	 allele	 fre-
quency	 (MAF).	Following	marker	 identification	and	de	novo	geno-
typing,	 an	 early	 draft	 of	 the	 walleye	 genome	 was	 obtained	 from	
the	Great	 Lake	Genomics	 Center	 at	 the	University	 of	Wisconsin-	
Milwaukee.	 Therefore,	 the	 alignment	 position	 on	 the	 draft	 ge-
nome	 was	 identified	 using	 bowtie2	 version	 2.2.4	 (Langmead	 &	
Salzberg,	2012)	and	used	as	a	filter	to	limit	the	linkage	disequilibrium	
among	panel	loci	by	removing	loci	in	close	proximity	to	one	another	
(personal communication	Aurash	Mohaimani,	Angela	Schmoldt,	and	

Rebecca	Klaper,	Great	Lakes	Genomics	Center;	Table	S1–	S8).	A	more	
detailed	description	of	the	RAD-	sequencing	methods	is	outlined	in	
Appendix	S1.

Following	MAF	and	alignment	position	filters,	129,281	SNPs	re-
mained.	Sequences	for	the	100,000	SNP	loci,	which	contained	the	
highest	MAF	and	heterozygosity	were	submitted	to	ArborBioscience	
(Ann	Arbor,	MI)	 for	 capture	bait	development	 to	create	a	Rapture	
panel.	Capture	baits	were	successfully	designed	for	99,636	loci	(80	
nucleotide	 baits	with	 2 × tiling).	 Sequencing	 libraries	 (maximum	 of	
96	individuals	per	library)	were	then	constructed	for	1289	walleye	
spanning	29	walleye	collection	locations	(Figure 1; Table 1)	and	bait	
captured	following	the	approach	outlined	in	Ali	et	al.	(2016).	These	
data	 were	 processed	 using	 STACKS	 v2.3	 (Rochette	 et	 al.,	 2019)	
and	quality	 filtered	using	 the	population	step	 in	STACKS	v2.3	and	
VCFtools	2.3	(Danecek	et	al.,	2011)	to	remove	220	individuals	and	
296,336	SNPs	with	poor	genotyping	rates	(Table	S2).	Following	fil-
ters,	 44,261	 of	 the	 baited	 loci	with	 a	 genotype	 rate	>70% across 
1069	individuals	were	retained	that	were	sequenced	to	an	average	
depth	of	coverage	of	19X.

2.2  |  Marker quality screening for GTSeq panel 
development

Microhaplotypes	were	identified	and	genotyped	for	all	44,261	SNP	
loci	in	the	datafile	using	a	whitelist	containing	marker	IDs	for	each	
locus	 and	 the	 population	 module	 of	 STACKS	 v2.3.	 The	 resulting	
microhaplotype-	VCF	 file	 was	 then	 filtered	 using	 VCFtools	 to	 re-
move	 loci	with	>20%	missing	data	 (Danecek	et	al.,	2011).	Because	
the	genotyping	rate	of	microhaplotypes	was	lower	than	that	of	indi-
vidual	SNPs,	to	maintain	a	consistent	set	of	loci	in	the	final	dataset,	
any	microhaplotype	removed	due	to	missing	data	was	replaced	with	
the	genotype	of	 the	 individual	SNP	call	with	the	highest	minor	al-
lele	frequency	from	the	original	44,261	SNP	datafile.	Locus	diversity	
was	summarized	with	custom	R	scripts	that	used	the	DiveRsity	and	
Adegenet	R	packages	(Jombart,	2008;	Keenan	et	al.,	2013).	Loci	were	
sequentially	removed	as	possible	GTSeq	panel	candidates	based	on	
inbreeding	coefficient	 (−0.2 < FIS < 0.2),	SNP	position	 (17 < SNP	po-
sition <140	on	 the	 forward	 read),	 and	number	of	alleles	per	 locus	
(<11).	These	filters	removed	27,723	loci,	leaving	16,538	as	possible	
GTSeq	panel	candidates.

2.3  |  Marker selection scenarios

Our	objective	was	to	create	a	GTSeq	panel	containing	400	to	600	
genetic	 markers.	 The	 number	 of	 potential	 markers	 was	 narrowed	
from	 16,538	 into	 five	 sets	 of	 600	 markers	 containing	 different	
numbers	 of	 markers	 that	 expressed	 high	 heterozygosity	 or	 allele	
frequency	variance.	High	allele	 frequency	differences	 (FST;	Weir	&	
Cockerham,	1984)	are	 important	for	applications	such	as	GSI	 (e.g.,	
Ozerov	et	al.,	2013),	while	high	heterozygosity	can	be	important	for	
kinship	analysis	(e.g.,	Baetscher	et	al.,	2018;	Blouin,	2003).	The	five	
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scenarios	included:	(1)	600	loci	with	the	highest	FST	and	0	markers	
chosen	based	on	heterozygosity	 (FST600_mHE0);	450	 loci	 chosen	
with the highest FST	and	150	markers	chosen	based	on	heterozygo-
sity	(FST450_mHE150);	300	loci	chosen	with	the	highest	FST and 300 
markers	 chosen	 based	 on	 heterozygosity	 (FST300_mHE300);	 150	
loci chosen with the highest FST	and	450	markers	chosen	based	on	
heterozygosity	(FST150_mHE450);	0	loci	chosen	with	the	highest	FST 
and	600	markers	chosen	based	on	heterozygosity	(FST0_mHE600).	
Marker	sets	were	then	subjected	to	GSI	and	kinship	analysis	simula-
tions,	and	the	panel	mixture	that	performed	well	for	both	GSI	and	
kinships	was	selected.	GSI	is	frequently	used	for	fisheries	manage-
ment	 to	define	management	units	and	 to	 track	movement,	 and	 to	
assess	 contributions	 of	 different	 stocks	 to	 a	 mixed	 harvest	 while	
kinship	analysis	is	the	basis	of	many	management-	focused	activities,	

such	as	close-	kin	mark-	recapture	(CKMR)	and	parentage-	based	tag-
ging	(Bravington	et	al.,	2016;	Schwartz	et	al.,	2007).	GSI	simulations	
were	 conducted	using	Rubias	 (Moran	&	Anderson,	2019)	 and	 kin-
ship	 simulations	were	 conducted	using	CKMRsim	 following	nearly	
identical	 protocols	 as	outlined	 in	Bootsma	et	 al.	 (2020).	 The	eight	
reporting	units	used	for	GSI	simulations	were	defined	based	on	prior	
knowledge	of	the	system	(i.e.,	existing	jurisdictional	and	geographi-
cal	 breaks	 in	 the	 system)	 and	 included:	 Lake	Ontario,	 the	Ontario	
Grand	River	in	Lake	Erie,	the	East	Basin	of	Lake	Erie,	the	West	Basin	
of	Lake	Erie,	Lake	Huron,	Lake	Michigan,	the	St.	Mary's	River,	and	
Lake	Superior	(Figures	S2 and S3).	The	FST450_mHE150	panel	that	
showed	 intermediate	 performance	was	 deemed	 the	 best	 general-	
use	 selection	 scenario	 and	used	 for	 subsequent	 panel	 design	 (see	
results;	Figures	S4 and S5).

TA B L E  1 Collection	site	number,	name,	and	haplotype	diversity	estimates	for	the	final	GTSeq	panel	for	walleye	from	the	Great	Lakes	
region	of	North	America.

Site # Population N
Average number 
of alleles

Effective number 
of alleles Ho GIS

Markers out 
of HWE

1 Erie-	Bournes	Beach 14 2.27 1.75 0.47 −0.200 22

2 Erie-	Cattaragus	Creek 18 2.34 1.75 0.38 0.021 21

3 Erie-	Chicken	Island	Reef 33 2.41 1.76 0.37 0.042 31

4 Erie-	Detroit	River 61 2.50 1.79 0.40 −0.026 34

5 Erie-	Grand	River,	Ohio 13 2.27 1.76 0.40 −0.020 9

6 Erie-	Maumee	River 73 2.54 1.79 0.42 −0.079 50

7 Erie-	Grand	River,	Ontario 60 2.44 1.73 0.36 0.017 37

8 Erie-	Sandusky	River 71 2.52 1.80 0.41 −0.049 32

9 Erie-	Shorehaven 47 2.43 1.77 0.38 0.000 29

10 Erie-	Lackawanna	Shoal 24 2.38 1.76 0.41 −0.064 30

11 Erie-	Tourssant	Reef 36 2.46 1.79 0.44 −0.122 50

12 Erie-	Van	Buren	Bay 49 2.47 1.77 0.38 −0.002 24

13 Erie-	Zellerhouse	Reef 47 2.45 1.77 0.38 0.016 31

14 Huron-	Moon	River 14 2.19 1.67 0.37 −0.005 14

15 Huron-	Tittabawasee	River 48 2.47 1.78 0.39 0.024 23

16 Michigan-	Fox	River 44 2.42 1.74 0.38 0.014 24

17 Michigan-	Little	Bay	De	Noc 41 2.33 1.67 0.35 0.018 20

18 Michigan-	Muskegon	River 48 2.38 1.68 0.35 0.020 27

19 Michigan-	Wolf	River 35 2.33 1.68 0.37 −0.017 20

20 Ontario-	Bay	of	Quinte 32 2.36 1.76 0.42 −0.075 31

21 Ontario-	Black	River 21 2.27 1.69 0.35 0.039 20

22 Ontario-	Oneida	Lake 13 2.10 1.60 0.32 0.028 8

23 St.	Clair-	Clinton	River 47 2.42 1.83 0.40 0.013 28

24 Superior-	Black	Sturgeon	River 37 2.35 1.66 0.36 −0.022 14

25 Superior-	Kakagon	River	(Bad	
River)

20 2.33 1.72 0.39 −0.012 18

26 Superior-	Lake	Gogebic 16 2.21 1.63 0.33 0.055 15

27 Superior-	Nipigon	Bay 31 2.32 1.68 0.33 0.097 38

28 Superior-	St.	Louis	River 30 2.31 1.71 0.36 0.043 29

29 Superior-	St.	Marys	River 46 2.44 1.74 0.37 0.027 32

Note:	Sample	size	(N),	average	number	of	alleles,	effective	number	of	alleles,	observed	(HO),	Nei's	inbreeding	coefficient	(GIS),	and	the	number	of	
markers	out	of	500	significantly	departed	from	HWE	at	an	α	of	.05.	Site	numbers	correspond	to	labels	in	Figure 1.
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    |  5 of 15EUCLIDE et al.

2.4  |  Panel primer design

We	selected	3X	the	number	of	loci	in	the	450:150	ratio	of	high	FST 
to	high	microhaplotype	heterozygosity	for	primer	design	to	account	
for	 the	 loss	 of	 markers	 due	 to	 poor	 primer	 design.	 Primers	 were	
then	 designed	 for	 each	marker	 using	 Primer3	 v.	 2.3	 (Untergasser	
et al., 2012; Table S3).	When	more	than	one	SNP	was	present	at	a	
locus,	primers	were	designed	to	target	as	many	SNPs	as	possible,	but	
preference	was	given	to	the	SNP	with	the	highest	minor	allele	fre-
quency.	However,	if	targeting	the	SNP	with	the	highest	minor	allele	
frequency	excluded	three	or	more	SNPs,	primers	were	redesigned	
to	exclude	the	highest	minor	allele	frequency	SNP	and	instead	tar-
get	the	group	of	3+	SNPs,	thereby	retaining	the	microhaplotype.	Of	
the	markers	investigated,	quality	primer	pairs	were	designed	for	793	
markers.	Nine	markers	were	removed	due	to	potential	off-	target	am-
plification	or	identical	forward	and	reverse	primers.	Diversity	statis-
tics	were	then	used	to	select	600	markers	from	the	remaining	784	
markers	to	retain	450	markers	originally	selected	based	on	SNP	FST 
and	 150	markers	 originally	 selected	 based	 on	microhaplotype	HE. 
The	 panel	 of	 600	markers	was	 then	 re-	assessed	 for	GSI	 and	 par-
entage	using	identical	protocols	as	preliminary	screening	to	ensure	
that	 it	 performed	 similarly	 as	 the	 original	 FST450_mHE150	 panel	
(Figures	S4 and S5).	Once	satisfied,	6-	bp	plate	and	sample	adapters	
were	added	to	forward	and	reverse	primer	sequences,	and	oligonu-
cleotides	 for	all	1200	primers	were	ordered	 from	 Integrated	DNA	
Technologies	(IDT,	Coralville,	Iowa).

2.5  |  Panel PCR optimization

The	optimal	multiplex	combination	of	primer	pairs	was	determined	
by	 conducting	 four	 sequential	 library	 preparation	 and	 sequenc-
ing	runs	on	MiSeq	Micro	flow	cells	(paired-	end	150 bp;	300 cycles).	
A	 single	 library	was	 run	 for	 each	 sequencing	 run.	 GTSeq	 libraries	
were	prepared	using	the	standard	GTSeq	library	preparation	proto-
cols	(Bootsma	et	al.,	2020;	Campbell	et	al.,	2015).	First,	 individuals	
were	 amplified	 in	 individual	 7-	μl PCRs containing 1.5 μl	 multiplex	
primer	 mixture	 (final	 working	 concentration	 of	 0.25 μM/primer),	
3.5 μl	Qiagen	HotStar	Taq	Multiplex	Plus	DNA	polymerase,	primer	
mixture,	and	2	μl	DNA	template.	Next,	plate	 (i7)	and	 individual	 (i5)	
barcode	adapters	were	ligated	in	a	10-	μL	PCR-	containing	5	μl	Qiagen	
HotStar	Taq	Multiplex	Plus	DNA	polymerase,	1	μl	of	each	i7	(10	μM)	
and 2 μl	 i5	barcodes	 (5	μM),	and	2	μl	of	3:17	diluted	PCR	product.	
The	concentration	of	 adapter-	ligated	PCR	product	was	normalized	
using	 SequalPrep	 Normalization	 plates	 (Applied	 Biosystems™)	 ac-
cording	 to	 the	manufacturer's	 protocol,	 pooled,	 and	purified	using	
a	0.65X	followed	by	a	1.0X	Beckman–	Coulter	Ampure	bead	cleanup	
and	standard	protocols	outlined	by	Beckman-	Coulter.	The	amount	of	
DNA	in	purified	libraries	was	quantified	using	fluorometry	on	a	Qubit	
(Life	Technologies),	and	product	size	was	assessed	using	an	Agilent	
Bioanalyzer.	Libraries	that	met	quality	checks	(>0.1 ng/μl and correct 
product	size)	were	loaded	onto	a	MiSeq	Micro	flow	cell	(300 cycles)	at	
7	pM	concentrations	along	with	10%	PhiX	spike	(Illumina,	Inc)	and	se-
quenced	at	either	the	University	of	Wisconsin	Biotechnology	Center	

F I G U R E  1 Geographical	distribution	of	walleye	spawning	stock	collection	sites	sampled	for	GTSeq	panel	design	and	major	jurisdictional	
boundaries	in	the	Great	Lakes.	Treated	waters	highlight	regions	with	existing	fishing	access	treaties	between	the	United	States	and	Great	
Lakes	region	tribal	nations.	Numbers	correspond	to	site	names	listed	in	Table 1.	Administrative	boundaries	were	accessed	from	https://
www.glahf.org/data/	December,	2021.
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(Optimization	run	1)	or	the	University	of	Wisconsin-	Milwaukee	Great	
Lakes	Genomics	Center	(Optimization	runs	2–	4).	The	data	were	de-
multiplexed	by	the	sequencing	core	and	sequencing	reads	associated	
with	target	SNPs	were	identified	using	the	GTScore	pipeline	and	the	
associated AmpliconReadCounter	perl	script	and	custom	primer-	probe	
file	(v.1.3;	github.com/gjmck	inney/	GTscore).	The	results	of	each	se-
quencing	run	were	summarized	in	MS	Excel	and	analyzed	using	cus-
tom	R	Scripts	using	 (R	v.4.1;	R	Core	Team,	2021;	Wickham,	2009; 
Xiao,	2018).	 Primers	 associated	with	 overamplified	 sequences	 and	
primers	producing	a	high	number	of	primer	dimers	or	off-	target	reads	
(i.e.,	reads	containing	the	primer	sequence	but	not	the	target	region)	
were	removed	iteratively	in	consecutive	sequencing	runs.	Our	target	
was	to	develop	a	mixture	of	primers	that	amplified	a	 large	number	
of	markers	evenly	(i.e.,	similar	depth	of	coverage	across	all	markers).	
Therefore,	we	used	the	Shannon	equitability	index	(H),	which	incor-
porates	both	richness	(number	of	unique	primer	pairs	remaining)	and	
evenness	of	 abundance	 (number	of	primer	 reads),	 as	 a	measure	of	
panel	performance	at	each	round	of	optimization.	Values	of	H closer 
to	1	 indicate	a	community	with	high	evenness,	therefore	 increases	
in H	 were	 defined	 as	 an	 increase	 in	 performance.	 The	 panel	 was	
deemed	optimized	once	H was >0.8	(Table	S4).

2.6  |  Final panel performance

Observed	 heterozygosity	 (HO),	 Nei's	 inbreeding	 coefficient	 (GIS; 
Nei,	1987),	and	Hardy–	Weinberg	equilibrium	(HWE)	was	calculated	
for	all	markers	in	the	final	panel	using	Genodive	v.	3	(Meirmans,	2020).	
Linkage	disequilibrium	among	loci	was	measured	by	calculating	the	
pairwise	correlation	coefficient	(r2)	among	all	SNPs	in	the	final	panel	
using	the	SNPrelate	R	package	(Zheng	et	al.,	2012).	Deviation	from	
HWE	was	estimated	using	a	one-	sided	t-	test	at	an	uncorrected	alpha	
(α)	of	.05	and	Bonferroni	corrected	α	of	.0001.	We	observed	a	high	
degree	 of	 spatial	 genetic	 structure	 among	 the	 collections	 used	 to	
develop	the	panel.	Therefore,	we	expected	the	number	of	 loci	out	
of	HWE	and	in	linkage	disequilibrium	to	be	moderately	high	in	the	
final	panel.

The	panel's	utility	for	GSI	and	kinship	was	evaluated	using	data	
from	the	initial	Rapture	baseline	filtered	to	retain	only	microhaplo-
type	 loci	 included	 in	 the	 final	GTSeq	panel.	GSI	performance	was	
evaluated	for	two	different	sets	of	reporting	units.	First,	sites	were	
grouped	 by	 the	 lake	 to	 evaluate	GSI	 among	 lakes,	 and	 then,	 sites	
were	grouped	within	each	 lake	to	determine	GSI	within	each	 lake.	
The	sample	size	for	Moon	River	 in	Lake	Huron	was	small	 (N =	14)	
after	 removing	 individuals	 with	 a	 low	 genotyping	 rate;	 therefore,	
samples	were	combined	with	Tittabawassee	samples	to	create	a	sin-
gle	Lake	Huron	reporting	group.	Additionally,	because	walleye	from	
Lake	 St.	 Clair	 and	western	 Lake	 Erie	 are	 known	 to	mix	with	 Lake	
Huron	walleye	(Brenden	et	al.,	2015),	samples	from	Lake	St.	Clair	and	
the	West	Basin	of	Lake	Erie	were	also	included	in	the	Lake	Huron	re-
porting	group.	Collections	within	all	other	lakes	were	analyzed	sep-
arately.	Pairwise	Weir	 and	Cockerham's	FST	was	calculated	among	

among-	lake	and	within-	lake	reporting	units	as	a	metric	of	population	
structure	(Meirmans,	2020;	Weir	&	Cockerham,	1984).

Genetic	 stock	 identification	 simulations	 were	 conducted	 in	
Rubias	using	99	replicate	100%	leave-	one-	out	simulations	run	using	a	
mixture	size	of	200	individuals	(Moran	&	Anderson,	2019).	Expected	
assignment	accuracy	to	collections	within	each	lake	was	estimated	
using	simulated	sample	mixtures	 in	which	100%	of	 the	 individuals	
are	from	one	collection	or	reporting	unit.	Expected	assignment	ac-
curacy	was	determined	based	on	the	number	of	individuals	correctly	
assigned	to	their	true	collection	location.	A	low	group	membership	
(pofZ)	 score	 of	>0.7 was used to assign individuals to collections. 
The	influence	of	pofZ	thresholds	of	0.7	to	0.95	on	assignment	results	
was	evaluated	by	estimating	the	average	assignment	accuracy	and	
number	of	unassigned	individuals	of	each	reporting	unit	at	0.05	pofZ 
intervals	(Figure	S6).	The	difference	in	average	assignment	accuracy	
of	reporting	units	(N =	24)	between	a	pofZ	threshold	of	0.7	and	0.95	
was	1%.	However,	increasing	pofZ to 0.95 led to a 1.8% increase in 
the	number	of	unassigned	individuals.	Given	the	limited	influence	of	
pofZ threshold on the observed results, we chose to use a low pofZ 
threshold	 to	 retain	 as	 many	 assignment	 observations	 as	 possible.	
The	proportion	of	correctly	assigned	individuals	was	calculated	for	
each	 replicate	and	summarized	 to	evaluate	variance	 in	assignment	
accuracy	among	all	five	lakes	and	among	sampled	spawning	stocks	
within	each	 lake.	 Stocks	with	high	 rates	of	misassignments	 (>10% 
on	average)	were	investigated	to	determine	where	individuals	were	
being	misassigned.

Kinship	simulations	were	conducted	in	CKMRSim	independently	
within	each	lake	using	whole-	lake	compositions	of	allele	frequency	
to	assess	the	power	for	pairwise	kinship	 inference.	The	R	package	
CKMRsim	 (https://github.com/eriqa	nde/CKMRsim)	 uses	 a	 Monte	
Carlo	sampling	approach	and	importance-	sampling	to	make	pairwise	
relationship	 inferences	 based	 on	 multiallelic	 data	 (see	 Baetscher	
et al., 2019	for	additional	descriptions).	By	simulating	sets	of	related	
and	unrelated	pairs	of	individuals	based	on	provided	allele	frequency	
data,	an	expected	log-	likelihood	ratio	distribution	of	pairwise	com-
parisons	of	individual	kinship	for	different	familial	relationships	(i.e.,	
full-	sibling,	 half-	sibling,	 parent-	offspring,	 or	 unrelated)	 is	 created.	
Overlap	in	log-	likelihood	ratio	distributions	can	then	be	used	to	es-
timate	 false-	positive	 rates	 (FPR)	 and	 false-	negative	 rates	 (FNR)	 of	
relationship	 assignments	 based	 on	 a	 given	 set	 of	markers	 and	 al-
lele	frequencies.	Because	false-	positive	rates	can	greatly	 influence	
CKMR	analyses	 (Bravington	 et	 al.,	2016;	Waples	&	Feutry,	2022),	
estimates	of	error	 rates	help	 to	determine	whether	a	set	of	mark-
ers	has	 sufficient	power	 to	assign	pairwise	 relationship	 status	be-
tween	 two	 individuals	while	minimizing	 false-	positive	 relationship	
assignment	(i.e.,	assigning	two	individuals	as	related	when	they	are	
in	reality	unrelated).	False-	positive	detection	rates	were	calculated	
by	using	allele	frequency	data	from	each	lake	to	simulate	1000	full-	
sibling	 (FS),	 half-	sibling	 (HS),	 parent-	offspring	 (PO),	 and	 unrelated	
(U)	pairs	 (4000	 total).	Next,	 the	 log-	likelihood	of	 relatedness	 for	a	
given	pair	of	individuals	was	calculated	for	simulated	related	individ-
uals.	The	relationship	between	observed	genotype	pair	probabilities	
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calculated	 for	 true	 related	 individuals	 (FS,	HS,	PO)	was	 then	com-
pared	with	the	hypothesis	of	no	relationship	(U).	These	values	then	
were	used	to	calculate	distributions	of	log-	likelihoods	of	relatedness	
and	to	compute	false-	positive	rates.	False-	positive	rates	for	parent-	
offspring,	 full-	sibling,	and	half-	sibling	relationships	were	estimated	
at	 false-	negative	 rates	 (per-	pair	 rate	 of	 truly	 related	 individuals	
being	inferred	to	be	unrelated)	ranging	from	0.01	to	0.1.	A	range	of	
false-	negative	rates	is	used	as	the	acceptable	ratio	of	false-	positive	
to	false-	negative	rates	varies	based	on	the	research	question.	The	
results	of	this	analysis	were	used	as	our	measure	of	the	GTSeq	pan-
el's	ability	to	be	used	for	kinship	analysis,	with	lower	probabilities	of	
false-	positive	errors	indicating	higher	panel	performance.

2.7  |  GTSeq genotyping performance

The	sequencing	consistency	of	the	GTSeq	panel	genotyping	was	as-
sessed	 by	 comparing	 genotypes	 from	 the	 same	95	 individuals	 se-
quenced	 independently	 in	 three	 different	 laboratories:	 University	
Wisconsin—	Milwaukee	 (Milwaukee,	 WI,	 USA),	 USGS	 Great	 Lakes	
Science	Center	(GLSC;	Ann	Arbor,	MI,	USA),	and	the	Ontario	Ministry	
of	Natural	Resources	and	Forestry	(OMNRF)	aquatic	genetics	lab	at	
Trent	University	(Peterborough,	ON,	CA).

Laboratories	each	prepared	a	GTSeq	library	using	in-	house	proto-
cols	and	reagents	and	sequenced	the	library	on	a	single	MiSeq	Micro	
flow	cell	(paired-	end	150	reads;	300 cycles).	Libraries	were	prepared	
at	UWM	and	the	GLSC	using	Small	RNA	Sequencing	Primer	adapters	
while	sequencing	at	Trent	was	conducted	using	primers	modified	to	
include	Nextera	XT	adapters.	Sequencing	data	from	all	laboratories	
were	processed	identically	using	the	GTScore	pipeline	to	first	pro-
duce	summaries	of	the	number	of	amplicon	reads	containing	target	
amplicons	 (primers)	 and	markers	 (probes)	 by	 individual	 and	 locus.	
Amplicon	reads	for	each	sample	then	were	used	to	score	genotypes	
for	each	locus	based	on	the	number	of	probe	reads	for	each	SNP	and	
a	maximum	likelihood	algorithm	described	in	McKinney	et	al.	(2018)	
that	accounts	for	variance	in	allele	dosage.

The	 consistency	 in	 sequencing	 output	 (i.e.,	 amplification	 and	
subsequent	sequencing	of	targeted	genetic	markers)	among	 librar-
ies	 prepared	 at	 the	UWM,	GLSC,	 and	OMNRF	 laboratories	 sepa-
rately	was	evaluated	using	the	number	of	reads	containing	a	primer	

sequence	to	the	number	of	reads	containing	a	probe	sequence	for	a	
given	marker	(i.e.,	the	exact	30-	bp	sequence	flanking	a	known	SNP	
or	microhaplotype).	Individual	coverage	was	calculated	as	the	total	
number	of	reads	containing	sequence	data	for	both	the	primer	and	
probe	for	a	given	marker	divided	by	500	(the	total	number	of	markers	
included).	For	each	marker	and	individual,	the	data	were	analyzed	as	
a	proportion	of	primer	reads	to	probe	reads	(here	forward	referred	
to as primer: probe	proportion).	The	consistency	 in	 this	proportion	
among	datasets	was	evaluated	using	pairwise	Pearson's	correlations	
of	marker-	specific	primer: probe	proportion.	Consistent	amplification	
of	the	GTSeq	panel	was	expected	to	result	in	a	strong	positive	result	
and	high	correlation	coefficient	(r2).	The	relative	differences	in	the	
individual	 or	marker	 sequencing	 variance	 among	 preparations	 are	
described using the standard deviation in primer: probe proportion.

Genotypes	were	defined	as	“congruent”	between	two	datasets	
if	the	same	alleles	were	scored	 in	both	cases	of	a	pairwise	assess-
ment	between	laboratories	for	a	given	individual	and	locus.	In	other	
words,	 if	 individual-	X	contained	an	AG	heterozygote	score	 in	both	
the	UWM	and	GLSC	datasets,	 the	genotype	was	considered	“con-
gruent”	between	these	datasets.	Congruency	 in	scored	genotypes	
among	separate	sequencing	runs	was	evaluated	in	a	pairwise	fash-
ion.	First,	individuals	that	lacked	genotype	calls	at	50%	or	more	of	the	
GTSeq	markers	were	removed	from	the	analysis.	Then,	the	percent	
of	 identical	genotype	calls	 (e.g.,	a	call	that	 is	scored	as	a	heterozy-
gote	in	both	datasets	being	compared)	was	calculated	for	individuals.	
One-	way	Analysis	of	Variance	 (ANOVA)	was	used	to	test	whether	
the	average	percent	of	congruent	genotypes	differed	between	labo-
ratory	pairs.	We	hypothesized	that	depth	of	coverage	may	influence	
genotype	call	accuracy,	and	therefore	also	tested	whether	average	
individual	total	read	count	across	all	three	sequencing	runs	influence	
percent	congruency	using	an	ANOVA.

3  |  RESULTS

3.1  |  Panel selection

All	five	tested	panel-	marker	combinations	performed	similarly	for	GSI	
to	eight	putative	reporting	units	and	kinship	assignment	of	parent-	
offspring	and	full-	sibling	pairs	(Table 2).	The	FST_600_mHE0	panel	

TA B L E  2 Mean	estimated	assignment	accuracy	across	eight	reporting	units	(Lake	Ontario,	the	Ontario	Grand	River	in	Lake	Erie,	the	East	
Basin	of	Lake	Erie,	the	West	Basin	of	Lake	Erie,	Lake	Huron,	Lake	Michigan,	the	St.	Mary's	River,	and	Lake	Superior)	and	the	estimated	false-	
positive	rate	(FPR)	of	full-	sibling	assignment	used	to	compare	between	five	potential	panels	at	an	accepted	false-	negative	rate	(FNR)	of	0.01.

Panel High FST SNPs High HO microhaplotypes Mean assignment accuracy FPRFNR=0.01

FST_600_mHE0 600 0 92.7% 3.9 × 10−15

FST_450_mHE150 450 150 91.1% 1.9 × 10−18

FST_300_mHE300 300 300 91.0% 3.7 × 10−20

FST_150_mHE450 150 450 90.0% 1.7 × 10−23

FST_0_mHE600 0 600 89.2% 5.8 × 10−24

Note:	Each	panel	contained	different	ratios	of	high	FST	SNPs	and	high	heterozygosity	(HO)	microhaplotypes.	The	bolded	panel	was	chosen	for	further	
optimization.	More	detailed	figures	of	GSI	and	kinship	are	available	in	Appendix	S1.
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8 of 15  |     EUCLIDE et al.

performed	 the	 best	 for	GSI	 (mean	 assignment	 accuracy	=	 92.7%)	
but	worst	for	kinship	analysis	(full-	sibling	FPR(FNR=0.01) =	3.8 × 10

−15).	
By	contrast,	the	FST_0_mHE600	panel	performed	more	poorly	for	
assignment	accuracy	(mean	assignment	accuracy	=	89.2%)	and	was	
the	best	for	kinship	analysis	(full-	sibling	FPR(FNR=0.01) =	5.8 × 10

−24).	
Based	 on	 these	 results,	we	 chose	 one	 of	 the	 intermediate	 panels	
(FST_450_mHE150),	 which	 appeared	 to	 perform	 moderately	 well	
for	both	GSI	(mean	assignment	accuracy	=	91.1%)	and	kinship	(full-	
sibling	FPR(FNR=0.01) =	2.3 × 10

−18).

3.2  |  Panel- marker diversity

Following	marker	quality	filtration,	panel	design,	and	multiplex	op-
timization	the	final	GTSeq	panel	contained	500	markers	containing	
a	 total	 of	 796	 SNPs	 that	 could	 be	 grouped	 into	 197	microhaplo-
type	 loci,	which	each	contained	more	than	one	SNP	and	303	SNP	
loci.	 The	 Shannon	 diversity	 of	 panel	 amplification	 changed	 from	
0.28	 after	 the	 first	 major	 round	 of	 optimization	 to	 0.88	 for	 the	
final	panel,	 indicating	a	 large	increase	in	the	evenness	of	sequenc-
ing	while	still	maintaining	a	high	 level	of	marker	 richness.	269	 loci	
aligned	 to	 unique	 contigs	 in	 the	 draft	 genome,	 and	 the	 remaining	
231	loci	aligned	to	109	different	contigs	averaging	2.1	loci	per-	contig	
and	an	average	distance	between	loci	aligned	to	the	same	contig	of	
375,627 bp.	 Average	 pairwise	 linkage	 disequilibrium	 (pairwise	 r2)	
among	SNPs	on	different	loci	was	0.09;	however,	25%	of	SNPs	as-
sessed contained r2 > 0.3	with	at	least	one	other	SNP	in	the	dataset.	
Microhaplotypes	contained	an	average	of	4.5	alleles	(95%	CI	=	4.3	
to	4.7),	average	effective	number	of	alleles	of	1.9	(95%	CI	= 1.8 to 
2.0),	and	average	observed	heterozygosity	of	0.45	 (95%	CI	=	0.44	
to	0.48).	All	SNPs	contained	two	alleles,	average	effective	number	
of	alleles	of	1.5	(95%	CI	=	1.48	to	1.53),	and	average	observed	het-
erozygosity	of	0.33	(95%	CI	=	0.32	to	0.34).	Additional	breakdown	of	
marker	and	population-	specific	diversity	can	be	found	in	Tables	S5 
and S6.	When	 looking	at	all	500	markers,	 the	overall	FST	of	mark-
ers	among	collections	was	0.126	(95%	CI	=	0.122	to	0.130)	and	the	
observed	heterozygosity	was	0.38	(95%	CI	=	0.37	to	0.39).	Markers	
contained	an	average	of	2.98	alleles	(95%	CI	=	2.85	to	3.13;	min	= 2; 
max	=	10)	with	an	effective	number	of	alleles	of	1.67	(95%	CI	= 1.63 
to	1.71).	Markers	had	similar	numbers	of	alleles,	heterozygosity,	and	
GIS	among	collections	(Table 1).	The	GIS	was	close	to	zero	in	all	collec-
tions	(overall	GIS =	−0.008;	95%	CI	=	−0.013	to	−0.004),	and	a	maxi-
mum	of	10%	of	 loci	departed	significantly	from	HWE	at	any	given	
collection	 (α =	 .05).	No	 loci	were	significantly	out	of	HWE	once	a	
Bonferroni	correction	was	applied	(α =	.0001).

3.3  |  Among- lake genetic stock identification

Average	 pairwise	FST	 among	Great	 Lakes	was	 0.083,	 the	 smallest	
distance	was	between	Lake	St.	Clair	and	Lake	Erie	(FST =	0.008)	and	
the	largest	was	between	Lake	Erie	and	Lake	Superior	(FST = 0.169; 
Table S7).	Average	assignment	accuracy	of	GSI	to	lake	was	greater	

than	95%	for	Lake	Ontario	(100%),	Lake	Erie	(99%),	Lake	Michigan	
(97%),	and	Lake	Superior	 (95%).	Average	assignment	accuracy	was	
less	 than	 95%	 for	 Lake	Huron	 (76%)	with	misassignments	 of	 indi-
viduals	to	Lake	Michigan	(9.8%),	Lake	St.	Clair	(6.4%),	Lake	Superior	
(3.5%),	and	Lake	Erie	(1.7%).	Average	assignment	accuracy	was	the	
lowest	for	the	Clinton	River	 in	Lake	St.	Clair	 (10%)	with	misassign-
ments	of	 individuals	 to	Lake	Erie	 (68%),	 Lake	Michigan	 (10%),	 and	
Lake	Huron	(6.5%).

3.4  |  Within- lake genetic stock identification

To	ensure	that	the	final	GTSeq	panel	could	be	used	effectively	within	
smaller	jurisdictions	throughout	the	Great	Lakes,	we	estimated	local	
GSI	 using	 mixture	 analysis	 and	 kinship	 within	 each	 of	 the	 Great	
Lakes.	Within-	lake	FST was 0.083 when averaged across all report-
ing	group	pairwise	comparisons	 (Table	S7).	Among-	group	pairwise	
FST	was	 lowest	among	Lake	Erie	(average	FST =	0.049)	and	highest	
in	Lake	Michigan	 (average	FST =	0.097).	Greater	 than	98.7%	of	 in-
dividuals were assigned to at least one collection with a pofZ > 0.7.	
Of	individuals	with	a	pofZ	score > 0.7,	80%	were	correctly	assigned	
to	 their	 true	 collection	 location	 (Figure 2).	 Fox	 River	 in	 the	 Lake	
Michigan	basin	had	particularly	low	GSI	accuracy	(mean	=	54%).	This	
was	largely	due	to	35%	of	individuals	being	misassigned	to	the	Wolf	
River,	which	is	connected	to	the	Fox	River	through	Lake	Winnebago	
(pairwise	FST =	0.011).	The	Kakagon	River	and	Nipigon	Bay	 in	 the	
Lake	 Superior	 basin	 also	 had	 noticeably	 lower	 GSI	 accuracy	 than	
other	collections	(mean	=	75%;	and	77%).	Walleye	from	the	Kakagon	
River	was	primarily	misassigned	to	the	nearby	St.	Louis	River	(pair-
wise FST =	0.022),	while	Nipigon	River	fish	were	misassigned	to	mul-
tiple	sites	 including	 the	Kakagon	River	 (7%;	pairwise	FST =	0.066),	
St.	Louis	River	(7%;	pairwise	FST =	0.068),	and	St.	Marys	River	(9%;	
pairwise FST =	0.091).	Average	assignment	accuracy	at	other	collec-
tions	was	higher	than	90%	but	did	vary	among	consecutive	 leave-	
one-	out	simulations.

3.5  |  Within- lake kinship assignment

To	evaluate	how	well	the	GTSeq	panel	performed	for	kinship	analy-
sis,	we	 compared	 estimates	 of	 false-	positive	 pairwise	 relationship	
assignments	 for	 full-	sibling,	 parent-	offspring,	 and	 half-	sibling	 rela-
tionships	simulated	from	allele	frequency	distributions	within	each	
lake.	 False-	positive	 rates	 for	 full-	sibling	 and	 parent-	offspring	 rela-
tionships	 were	 less	 than	 1 × 10−11	 at	 an	 acceptable	 false-	negative	
rate	of	0.01	(Figure 3).	This	 indicates	that	the	ability	to	distinguish	
between	 unrelated	 pairs	 and	 full-	sibling	 or	 parent-	offspring	 pairs	
was	 high.	 False-	positive	 rates	 differed	 slightly	 among	 lakes	 and	
were	highest	 in	 lakes	Erie	and	Huron,	and	 lowest	 in	Lake	Ontario.	
However,	in	all	cases,	we	concluded	that	the	maximum	false-	positive	
rate	for	full-	sibling	and	parent-	offspring	pairs	should	be	sufficiently	
low	for	most	applications.	The	false-	positive	rate	for	distinguishing	
true	half-	siblings	from	unrelated	pairs	was	substantially	higher	and	

 20457758, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9591 by N

orthw
est Fisheries Science, W

iley O
nline L

ibrary on [26/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9 of 15EUCLIDE et al.

ranged	from	1 × 10−2	to	3 × 10−2	(FNR	=	0.01)	to	6 × 10−4	to	6 × 10−4 
(FNR	=	0.1).	About	1	out	of	every	100	to	300	observations	can	be	
expected	 to	 be	 false	 positives	when	 an	 FNR	 threshold	 of	 0.01	 is	
used.

3.6  |  Variation among laboratories

A	 similar	 primer: probe	 read	 coverage	 was	 achieved	 by	 the	 GLSC	
and	UWM	 laboratories	 (UWM	=	 66.9X;	GLSC	=	 77.5X).	 This	was	
substantially	higher	than	the	primer: probe read coverage achieved 

by	 the	 OMNRF	 laboratory	 (OMNRF	 =	 16.9X).	 Sequencing	 data	
produced	 by	 OMNRF	 contained	 a	 much	 higher	 number	 of	 off-	
target	reads	per	 individual	 (average	off-	target	reads	per	 individual:	
OMNRF	=	35,593.2)	compared	with	UWM	or	GLSC	(UWM	=	4981.6;	
GLSC	=	6965.8).

The primer: probe	 proportion	 of	 each	 marker	 was	 positively	
correlated	among	 runs	 from	different	 laboratories	 suggesting	 that	
marker	amplification	and	sequencing	performed	similarly	between	
sequencing	 replicates	 (Figure	S7).	The	correlation	was	weaker	be-
tween	 OMNRF	 and	 UWM	 or	 GLSC	 (r(434)	 = .73, p < .001	 and	
r(434)	= .72, p < .001)	than	between	GLSC	and	UWM	(r(468)	= .89, 

F I G U R E  2 The	estimated	genetic	
stock	identification	accuracy	for	each	
within-	Lake	reporting	unit	(x- axis)	for	the	
final	GTSeq	panel	containing	500	SNP	
and	microhaplotype	markers.	Reporting	
units are colored according to their 
corresponding	Great	Lake.	Each	point	
represents	the	proportion	of	individuals	
correctly	assigned	with	a	(pofZ)	score	of	
>0.7 to a given reporting unit in a single 
leave-	one-	out	100%	mixture	simulation	
(N =	99).

F I G U R E  3 The	change	in	false-	positive	detection	rates	(i.e.,	the	rate	of	true-	unrelated	pairs	being	identified	as	full-	sibling	[FS],	half-	sibling	
[HS],	or	parent-	offspring	[PO]	pairs)	for	10	false-	negative	rates	(0.01–	0.1;	i.e,	the	rate	of	true	full-	sibling,	half-	sibling,	or	parent-	offspring	
pairs	being	identified	as	unrelated	pairs)	estimated	separately	for	each	lake.	Note	that	the	y-	axis	differs	between	plots.
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10 of 15  |     EUCLIDE et al.

p < .001).	Amplification	and	sequencing	performance	of	 individuals	
was	 less	 consistent	 among	 laboratories	 than	 markers	 (Figure	 S8).	
When	primer: probe	proportion	was	 summarized	by	 the	 individual,	
there	was	little	correlation	among	sequencing	runs	(OMNRF	to	UWM	
r(94)	=	−.10,	p =	.316;	OMNRF	to	GLSC	r(94)	=	.42,	p < .001;	UWM	to	
GLSC	r(94)	= .11, p =	.297).	While	individual	primer: probe proportion 
was	not	strongly	correlated	among	runs,	the	variance	(standard	de-
viation	[SD])	in	primer: probe	proportion	among	individuals	within	the	
same	sequencing	 run	was	 lower	 (SDUWM =	0.12,	SDOMNRF = 0.03, 
SDGLSC =	0.10)	than	among	markers	(SDUWM =	0.20,	SDOMNRF = 0.19, 
SDGLSC =	0.19).

Individuals	 were	 successfully	 genotyped	 for	 90%	 of	 markers	
at	UWM	(SD	=	10.5%)	and	GLSC	(SD	=	6.3%)	and	63%	at	OMNRF	
(SD	=	 9.9%).	 The	 average	 individual	 congruence	 between	 shared	
genotype	 calls	 among	 laboratories	 ranged	 from	 a	 low	 of	 94%	be-
tween	UWM	and	OMNRF	to	a	high	of	97%	between	UWM	and	GLSC	
(Table 3).	Congruence	was	slightly	better	for	SNPs	(95%	to	98%)	than	
microhaplotypes	(93%	to	96%).	The	range	of	individual	congruence	
was	 large	 (76%	 to	99.8%).	Average	 individual	 congruence	differed	
among	laboratories	(ANOVA	p =	6.8 × 10−7, F2, 262 =	1.3)	with	indi-
viduals	from	OMNRF	tending	to	have	lower	congruence	with	UWM	
and	 GLSC	 than	 GLSC	 and	 UWM	 had	 with	 each	 other	 (Figure 4).	
Genotype	 congruence	 was	 not	 influenced	 by	 individual	 coverage	
(ANOVA	p = .7; F1, 263 =	0.14),	suggesting	that	depth	of	coverage	may	
not	be	a	principal	factor	influencing	genotype	congruence.

4  |  DISCUSSION

Interjurisdictional	 natural	 resource	 research	 and	 conservation	
rely	 on	 an	 ability	 to	 integrate	 data	 and	 de-	centralize	work	 pursu-
ing	 research	 objectives.	 The	 genotyping-	in-	thousands	 sequencing	
(GTSeq)	panel	that	we	created	for	walleye	provides	an	efficient	and	
consistent	method	 of	 collecting	 genetic	 data	 on	walleye	 of	 Great	
Lakes	 lineages	 for	 fisheries	 research	 and	 management	 purposes.	
We	demonstrate	that	SNP	and	microhaplotype	genotypes	from	the	
500	markers	included	in	our	GTSeq	panel	could	be	used	to:	(1)	as-
sign	 individuals	 to	most	major	walleye	stocks	 in	each	of	 the	Great	
Lakes with >90%	accuracy;	 (2)	assign	parent-	offspring,	 full-	sibling,	
and	half-	sibling	kinship	relationships	with	low	false-	positive	rates	of	
detection;	and	(3)	reproduce	genotypes	in	separate	sequencing	runs	
on	different	 sequencers	 at	 different	 facilities	 on	 average > 94%	of	
the	time.

4.1  |  Predicted performance for fisheries 
applications

Identification	of	 the	 geographical	 source	of	 a	 sample	of	 unknown	
origin	has	important	implications	for	both	management	(Valenzuela-	
Quiñonez,	2016)	and	conservation	biology	(Zhang	et	al.,	2020).	By	
targeting	genetic	markers	with	high	diversity	and	among-	collection	
allele	frequency	variability,	we	created	a	multi-	use	GTSeq	panel	that	

should	 perform	 adequately	 for	most	walleye	GSI	 studies	 in	major	
Great	Lakes	jurisdictions.	Stock	identification	and	structure	is	a	key	
management	 objective	 for	 several	 major	 walleye	 population	 as-
semblages	throughout	the	Great	Lakes	including	Lake	Erie	(Euclide,	
MacDougall,	 et	 al.,	 2021),	 Saginaw	 Bay,	 Lake	 Huron	 (Brenden	
et al., 2015),	Green	Bay,	Lake	Michigan	(Dembkowski	et	al.,	2018),	
and	Lake	Superior	 (Homola,	unpublished data).	Our	 analysis	 shows	
that	 the	 panel	 should	 perform	 sufficiently	 well	 in	 each	 of	 these	
regions	 to	 assign	 individuals	 to	 specific	 spawning	 reefs/sites	 as	 in	
Lake	Superior	or	to	groups	of	sites	such	as	the	“West	Basin”	vs.	“East	
Basin”	of	Lake	Erie	with	>90%	accuracy.	Importantly,	this	means	that	
this	single	marker	panel	could	be	used	to	facilitate	mixed-	stock	as-
signment	and	recovery	programs	for	walleye	in	many	different	areas.	
Data	collected	from	these	regional	studies	could	be	shared	to	iden-
tify	long-	distance	migrants	and	larger	spatial	patterns	in	movement	
and	gene	flow.

Future	generation	and	sharing	of	new	data	by	researchers	using	
this	GTSeq	panel	could	help	to	improve	GSI	and	kinship	assignment	
accuracy.	 Increasing	 the	 number	 of	 sites	 and	 samples	 included	 in	
population	 baselines	 increases	 the	 accuracy	 of	 population	 allele	
frequency	estimates	(Wood	et	al.,	1987).	In	our	study,	sample	sizes	
of	our	baseline	dataset	were	variable	but	generally	included	greater	
than	30	individuals	from	a	given	spawning	population.	The	high	GSI	
and	kinship	accuracy	at	 the	 lake	and	collection	 levels	suggest	 that	
our	 samples	 provided	 an	 adequate	 baseline	 for	 common	manage-
ment	 applications.	 However,	 additional	 sampling	 and	 genotyping	
from	new	sites	and	new	individuals	from	collections	with	low	sample	
sizes	 (N < 30)	would	 improve	allele	 frequency	estimates,	especially	
for	microhaplotype	data.	The	importance	of	sample	size	is	exempli-
fied	by	the	GSI	accuracy	in	Lake	Erie,	where	the	pairwise	FST	among	
reporting	groups	is	low	compared	with	the	rest	of	the	Great	Lakes,	
but	GSI	accuracy	was	still	greater	than	90%,	which	we	attribute	to	
the	large	sample	sizes	available	for	those	reporting	groups.	However,	
increasing	the	baseline	dataset	through	data	sharing	must	be	done	
with	 caution.	Our	 results	 indicate	 that	 genotype	 congruency	was	
not	100%	among	separate	 sequencing	 runs.	Therefore,	 the	use	of	
reference	samples	and	continued	assessments	of	GTSeq	panel	gen-
otype	accuracy	would	be	necessary	to	ensure	that	there	is	consis-
tency	in	genotype	scoring	between	the	existing	baseline	and	newly	
added	samples.	Extensive	baseline	genotyping	and	development	of	
allele	 frequency	 reference	 samples	 are	 important	 steps	 in	 the	de-
velopment	of	 standardized	marker	panels	 (Seeb	et	al.,	2007;	 Stott	
et al., 2010).	Therefore,	the	present	panel	should	be	viewed	as	the	
starting	place	that	will	be	improved	with	ongoing	collaboration	and	
continued	optimization.

One	 of	 the	major	 benefits	 of	 including	microhaplotype	 loci	 in	
panel	construction	is	that	they	provide	multiallelic	markers	that	can	
facilitate	kinship	and	pedigree	analysis	(Baetscher	et	al.,	2018).	Our	
data	demonstrated	that	microhaplotypes	did	contain	higher	genetic	
diversity	than	biallelic	SNPs,	which	contributed	to	accurate	kinship	
assignment	 for	walleye	 throughout	 the	Great	Lakes.	However,	mi-
crohaplotypes	also	contained	higher	inter-	laboratory	scoring	errors.	
These data could provide new opportunities to assess the abundance 
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    |  11 of 15EUCLIDE et al.

of	local	walleye	populations	using	genetic	techniques	such	as	close-	
kin	mark-	recapture	(CKMR)	and	rarefaction,	which	benefit	from	mul-
tiallelic	markers	(Bravington	et	al.,	2016;	White	et	al.,	2022).

Prior	to	the	application	of	the	present	panel	to	kinship	studies,	
there	 are	 several	 reasons	 why	 additional	 assessments	 of	 kinship	
for	 target	 populations	 will	 be	 necessary.	 First,	 the	 false-	positive	
rates	 of	 detection	 for	 half-	siblings	 were	 substantially	 higher	 than	
for	 parent-	offspring	 and	 full-	sibling	 identification	 in	 simulations.	
Misassignment	 of	 half-	siblings	 can	 be	 an	 issue	 for	 CKMR	 when	
full-	sibling	and	parent-	offspring	pairs	may	be	uncommonly	encoun-
tered	 in	 sample	 sets	 (Waples	&	Feutry,	2022).	 Second,	 our	 analy-
sis	 focused	 on	 determining	 false-	positive	 rates	 of	misassigning	 an	
unrelated	 pair	 as	 a	 related	 pair.	 However,	 the	majority	misassign-
ments	are	 likely	 to	occur	between	different	 types	of	 related	pairs	
(e.g.,	misassigning	half-	siblings	as	full-	siblings).	Third,	about	a	quarter	
of	the	SNP	markers	 in	the	panel	appear	to	be	 in	moderate	 linkage	
disequilibrium	with	at	least	one	other	locus	in	the	panel.	Given	the	
large	physical	distance	between	markers	based	on	alignment	to	the	
draft	walleye	genome,	we	suggest	 that	much	of	 this	 linkage	 is	 the	
result	of	population	structure	and	not	physical	 linkage	among	loci.	
Nonetheless,	power	assessments	of	kinship	assignment	can	become	
inflated	when	linked	loci	are	included	(Huang	et	al.,	2004).	Thus,	re-
searchers	should	conduct	their	own	power	assessments	and	linkage	

disequilibrium	assessments	using	samples	collected	from	their	study	
area	to	determine	the	statistical	power	of	the	panel	prior	to	large-	
scale application.

4.2  |  Interjurisdictional collaboration

Most	 fisheries	 management	 and	 research	 activities	 in	 the	 Great	
Lakes	 are	 decentralized	 and	 decisions	 are	 based	 on	 data	 pro-
duced	 from	 each	 lake's	 surrounding	 jurisdictional	 fisheries	 agen-
cies.	 Therefore,	 the	 creation	 of	 a	 standardized	 resource	 is	 only	
the	 first	 step	 towards	 unifying	 walleye	 research	 and	 stock	 moni-
toring	 throughout	 the	Great	 Lakes	 region	 (Sard	et	 al.,	2020;	 Stott	
et al., 2010).	 Long-	term	 collaboration	 among	 laboratories	 will	 be	
required	to	ensure	that	data	produced	separately	is	consistent	and	
comparable.	We	demonstrated	that	most	genotype	calls	were	con-
sistent	 among	 independent	 sequencing	 runs;	 however,	 discrepan-
cies	can	be	expected.	For	example,	sequencing	data	produced	from	
OMNRF	contained	fewer	reads	that	could	be	assigned	to	any	of	the	
target	markers,	and	 this	 led	 to	a	 lower	overall	genotyping	 rate	 for	
individuals	in	this	dataset.	We	were	unable	to	identify	the	reason	for	
the	lower	sequencing	quality	obtained	from	the	OMNRF	laboratory;	
however,	we	predict	that	it	is	likely	associated	with	slight	differences	

TA B L E  3 Among-	laboratory	genotype	congruence	statistics	for	individuals	with	a	genotype	rate	greater	than	50%	for	all	types	of	markers	
(All),	microhaplotypes	(mhaps),	and	single	nucleotide	polymorphisms	(SNPs).

Comparison

Median Mean (SD) Minimum– maximum

All Mhaps SNPs All Mhaps SNPs All Mhaps SNPs

UWM	vs.	GLSC 98.6 97.8 99.1 96.8	(4.0) 96.3	(3.8) 97.7	(3.1) 76.0–	99.8 85.0–	100.0 88.0–	100.0

UWM	vs.	OMNRF 95.9 94.3 96.8 93.9	(4.3) 93.2	(4.3) 94.9	(4.4) 81.4–	98.6 78.5–	99.0 81.5–	99.6

OMNRF	vs.	GLSC 96.1 94.9 97.0 94.2	(4.4) 93.2	(4.8) 95.2	(4.3) 83.0–	98.7 75.0–	99.2 83.3–	99.6

Note:	Values	are	calculated	from	the	percentage	of	identical	called	genotypes	compared	between	the	same	individuals	sequenced	three	separate	
times	at	the	University	of	Wisconsin—	Milwaukee	(UWM),	the	Great	Lakes	Science	Center	(GLSC),	and	Ontario	Ministry	of	Natural	Resources	and	
Forestry	(OMNRF).	Standard	deviation	(SD)	of	the	mean	is	shown	in	parentheses.

F I G U R E  4 Pairwise	percent	of	
identical	genotype	calls	(y-	axis)	made	by	
individual	laboratories	(x-	axis)	between	
sequencing	runs	conducted	independently	
at	the	Ontario	Ministry	of	Northern	
Development,	Mines,	Natural	Resources	
and	Forestry	(OMNRF)	laboratory	at	Trent	
University,	the	University	of	Wisconsin-	
Milwaukee	(UWM)	and	the	USGS	Great	
Lakes	Science	Center,	Ann	Arbor	MI	
(GLSC).	The	dashed	red	line	denotes	
95% congruence. Individuals are ordered 
approximately	by	percent	matching	calls	
from	highest	to	lowest.
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in	 laboratory	protocols.	While	OMNRF	data	were	generated	using	
Nextera	XT	adapter	instead	of	the	Small	RNA	Primer	used	at	UWM	
and	the	GLSC,	we	believe	it	is	unlikely	that	this	led	to	major	differ-
ences	in	sequencing	quality	as	the	Nextera	XT	adapter	is	compatible	
with	the	Illumina	MiSeq	technology	(Illumina,	San	Diego,	CA,	USA).	
Several	individuals	in	our	dataset	showed	consistently	lower	congru-
ency,	but	we	did	not	find	any	clear	relationship	with	reading	counts	
or primer: probe,	suggesting	that	other	factors	may	influence	individ-
ual	congruency.	Further	publications	of	GTSeq	genotype	error	rates	
and	the	establishment	of	a	reference	sample	database	may	help	to	
increase	 consistency	 among	 laboratories.	 Similar	 approaches	 have	
been	 successful	 for	microsatellite	 panels	 (Seeb	 et	 al.,	2007;	 Stott	
et al., 2010)	and	have	begun	to	be	used	for	GTSeq	panels	(Bohling	
et al., 2021;	Hayward	et	al.,	2022).	However,	the	appropriate	use	of	
positive	and	negative	controls	should	help	account	for	batch	effects	
in	future	studies.

The	need	for	standardized	resources	that	facilitate	interjurisdic-
tional research is a constant across natural resource conservation 
and	management.	Here	we	 respond	 to	 that	 need	by	developing	 a	
new	 genetic	 resource	 that	will	 facilitate	 population	 structure	 and	
connectivity	research	of	one	of	the	most	important	fisheries	in	the	
Great	Lakes	region	of	the	United	States	and	Canada,	walleye.	Our	
panels	and	necessary	resources	have	been	made	publicly	available	
through	 this	 publication	 (Dryad:	 https://doi.org/10.5061/dryad.
xd254	7dmg).	We	showed	that	the	GTSeq	panel	provides	high	assign-
ment	accuracy	for	major	walleye	stocks	in	each	of	the	Great	Lakes,	
low	 false-	positive	 kinship	 assignment	 for	 full-	sibling	 and	 parent-	
offspring	pairs,	and	>95%	genotype	congruence	among	subsequent	
sequencing	runs.	We	hope	that	future	studies	using	this	research	will	
continue	to	improve	panel	performance	and	add	to	ongoing	collabo-
ration	to	the	benefit	of	walleye	fisheries	in	North	America.
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